首页|轴承在线早期故障检测的无监督张量深度迁移学习方法

轴承在线早期故障检测的无监督张量深度迁移学习方法

扫码查看
基于张量分解可有效挖掘信号高维本质信息的优点,提出一种无监督张量深度迁移学习方法。首先,构建基于张量表示的深度多任务异常检测模型,利用核心张量构建单分类异常检测规则表示,并建立超球规则适配机制,交替优化张量分解和域无关特征提取,以实现异常检测规则在离线轴承和在线目标轴承间的有效传递,完成在线无标记数据的异常检测;其次,提出一个基于异常概率贯序累积的非参数报警阈值设定方法,可在仅设定误报警率置信度的条件下自适应选择在线阈值,并给出该阈值合理性的理论分析。在IEEE PHM Challenge 2012轴承数据集上进行实验,结果表明,所提出方法可获得更好的检测实时性和更低的误报警数,为早期故障检测提供一种具有易部署性和鲁棒性的解决方案。
Unsupervised tensor-based deep transfer learning for online early fault detection of bearing
With the merit that tensor decomposition can represent high-dimensional essential information of signal effectively,this paper proposes an unsupervised tensor-based deep transfer learning approach.First,a tensor representation-based deep multi-task anomaly detection model is built.This model utilizes core tensor to construct the representation of one-class anomaly detection rule and establishes hypersphere rule adaptation mechanism.By running with an alternative optimization of tensor decomposition and common feature extraction,this model can conduct effective transition of anomaly detection rule from offline bearings to online target bearing and realize anomaly detection of online unlabeled data.Second,a nonparametric alarm threshold setting method is designed based on sequential accumulation of anomalous probability.This method can adaptively determine online threshold only requiring the confidence level of false alarm.Moreover,a theoretical analysis about the threshold's rationality is provided.Experimental results on the IEEE PHM Challenge 2012 dataset show that the proposed approach can obtain real-time detection performance and lower number of false alarm.The proposed approach is believed to supply a solution with better deployment and robustness.

early fault detectiondeep learningtransfer learninganomaly detectionrolling bearing

毛文涛、施华东、张艳娜、仲志丹

展开 >

河南师范大学计算机与信息工程学院,河南新乡 453007

智慧商务与物联网技术河南省工程实验室,河南新乡 453007

河南科技大学机电工程学院,河南洛阳 471000

早期故障检测 深度学习 迁移学习 异常检测 滚动轴承

国家重点研发计划重点专项河南省科技重大专项河南省科技研发计划联合基金

2018YFB1701400221100220100222103810030

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(3)
  • 29