首页|基于深度多源子域适应网络的滚动轴承跨域故障诊断

基于深度多源子域适应网络的滚动轴承跨域故障诊断

扫码查看
针对域适应技术在源域数据集子类距离过近以及样本数量少时分类精度低的问题,提出一种基于深度卷积生成对抗网络(DCGAN)数据扩充的深度多源子域适应网络(DMSAN)故障诊断方法。首先,针对目标域样本少的问题,引入深度卷积生成对抗网络对其进行数据扩充;其次,通过网络分支结构获取多源域的共享特征;再次,使用局部最大均值差异(LMMD)进行特征映射,对齐每个源域和目标域的子领域;最后,采用加权模块实现全局损失的最小化,以及多源域联合诊断。引入美国凯斯西储大学(CWRU)数据集和搭建故障诊断平台测得的轴承故障数据集进行实验,结果表明所提出模型的跨域故障诊断精度高于其他域适应对比模型,在目标域数据较少时优势尤为明显。
Cross-domain fault diagnosis of rolling bearings based on deep multi-source sub-domain adaptation networks
In order to overcome the low classification accuracy under small number of samples or that the subclasses of the source domain data set are too close,a deep multi-source subdomain adaptation network(DMSAN)method for bearing fault diagnosis is presented.Firstly,for the problem of small samples in the target domain,the deep convolutional generative adversarial network(DCGAN)is used to expand it.Secondly,the shared features of multiple source domains are obtained through the network branching structure.Then,the local maximum mean discrepancy(LMMD)is used to align the subdomains of each source and target domains.Finally,the weighting module is used to minimize the global loss and realize the joint diagnosis of multiple source domains.Experiments are conducted using a dataset of bearing failures measured at Case Western Reserve University and by building a troubleshooting platform.The experimental results show that the cross-domain fault diagnosis accuracy of the proposed model is higher than that of other domain adaptation comparison models,especially for the target domain with less data.

domain adaptationadversarial networksmulti-source domainsfew-shotfault diagnosisrolling bearings

李晨昀、景旭文、李炳强、周宏根、刘金锋

展开 >

江苏科技大学机械工程学院,江苏镇江 212000

域适应 对抗网络 多源域 小样本 故障诊断 滚动轴承

国防装备预研快速扶持项目国家重点研发计划国家重点研发计划

809020107012020YFB17126002020YFB1712602

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(3)
  • 18