首页|抽象技术及其在蒙特卡洛树搜索中的应用研究综述

抽象技术及其在蒙特卡洛树搜索中的应用研究综述

扫码查看
抽象技术作为人工智能研究中高效拓展决策的重要组成部分,已广泛应用于大规模的决策问题。蒙特卡洛树搜索虽然在众多决策领域取得了卓越成就,但是在现实决策问题中面临着决策空间巨大和规划周期很长的问题。鉴于此,研究抽象技术及其在蒙特卡洛树搜索中的应用,从状态空间和动作空间两个角度出发分析抽象技术如何提升蒙特卡洛树搜索的决策能力,并对抽象蒙特卡洛树搜索研究中仍需要解决的问题和未来的研究方向作进一步展望。
A review of abstract technology and its application in Monte Carlo tree search
Abstract technology is an essential part of efficient decision-making in artificial intelligence research and has been widely used in large-scale decision-making problems.Although Monte Carlo tree search has achieved impressive results in many decision-making fields,it faces challenges of a vast decision space and long planning cycles in real-world decision-making problems.This paper investigates the application of abstract technology in Monte Carlo tree search and analyzes how it can enhance the decision-making ability of Monte Carlo tree search from the perspectives of state space and action space.Additionally,this paper provides further insights into the problems that still need to be addressed and future research directions in the study of abstract Monte Carlo tree search.

state abstractionaction abstractionMonte Carlo tree searchdecision

邵天浩、程恺、张宏军、张可

展开 >

陆军工程大学指挥控制工程学院,南京 210007

状态抽象 动作抽象 蒙特卡洛树搜索 决策

国家自然科学基金项目国防科技创新特区项目

61806221211-CXCY-A04-02-01-01

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(4)
  • 147