首页|面向荒漠复杂地形的机器人在线全覆盖路径规划方法

面向荒漠复杂地形的机器人在线全覆盖路径规划方法

扫码查看
对于地形复杂、范围广阔的荒漠环境,当前的地图模型存在占用存储空间过大的问题;同时在复杂地形下,当前的全覆盖路径规划算法能量消耗大,无法适用于在线条件。对此,提出一种在线的全覆盖路径规划算法及相应的地图模型。首先,介绍一种变分辨率的三维栅格地图模型。其次,分析机器人在非平面环境下进行全覆盖任务的能量消耗问题,得出最节约能量的覆盖方式。在对平坦地形的覆盖中,基于优先级覆盖的思想,对传统的牛耕法覆盖做出改进,拓展为8个方向。然后,针对非平坦地形提出一种在线的面向地形的区域分解方法,在全覆盖过程中根据高度将特殊地形区域分解出来单独覆盖。在子区域内部,对特殊地形抽象得到斜面模型,引入地形变化函数,形成新的优先级遍历方法,并设计一种针对性的避障策略以进一步减少能量消耗。最后,对所提出的算法进行仿真验证以及机器人实验。仿真验证和实验结果表明,相比于其他算法,所提出算法能显著减少全覆盖过程中的重复率以及机器人总能量消耗。
Robot online fully coverage path planning algorithm for desert complex terrain
For the desert environment with complex terrain and wide range,the current map model occupies too much storage space.At the same time,in complex terrain,the current full coverage path planning algorithm consumes a lot of energy and is not suitable for online conditions.Aiming at these problems,an on-line fully coverage path planning algorithm and its map model is proposed.Firstly,a variable resolution 3D grid map model is introduced.Then,the energy consumption of a robot in the full coverage task in non-planar environment is analyzed,and the most energy-saving coverage mode is obtained.In the coverage of flat terrain,based on the idea of priority coverage,the traditional boustrophedon fully coverage algorithm is improved by being expanded into 8 directions.Then,an on-line terrain oriented region decomposition method is proposed for non-flat terrain.In the process of full coverage,the special terrain region is decomposed by height and covered separately.In the sub region,the slope model is abstracted from the special terrain,the terrain change function is introduced to form a new priority traversal method,and a targeted obstacle avoidance strategy is designed to further reduce energy consumption.Simulation verification and experiment results show that compared with other algorithms,this algorithm can significantly reduce the repetition rate and total energy consumption of robots in the process of full coverage.

path planningfully coveragecomplex terrainregion decompositionrobotavoidance strategy

齐立哲、华中伟、苏昊、王鑫瑞、孙云权

展开 >

复旦大学工程与应用技术研究院,上海 200433

路径规划 全覆盖 复杂地形 区域分解 机器人 避障策略

上海市人工智能重大专项项目

2021SHZDZX0103

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(4)
  • 22