首页|基于多尺度时空图神经网络的污染物浓度预测

基于多尺度时空图神经网络的污染物浓度预测

扫码查看
基于深度学习的细粒度污染物浓度预测是一种新兴且具有前景的方法,如何充分利用气象、空间和时间等3大信息是其关键。为了协同融合3大信息,提出一种基于多尺度时空图神经网络的污染物浓度预测模型。该模型利用空气质量模型动态构建多尺度的时空图神经网络,学习污染物之间的动态时空关系。具体为:利用图神经网络学习污染物之间的多尺度空间关系,采用空气质量模型HYSPLIT构建图的结点和边属性,通过基于注意力机制的GRU(gate recurrent unit)学习污染物浓度之间的时序关系。该模型不仅充分考虑了气象、空间和时间3大影响因素,还将3个因素联动起来统一到一个框架内协同学习。该方法与传统的机理模型方法相比具有灵活部署、易于实施的特点。实际项目数据集和公开数据集上的实验表明:与现有先进的基于图神经网络的方法相比,该方法预测的污染物浓度平均绝对误差降低了0。6左右,对称平均绝对百分比误差降低0。005左右。
Pollutant concentration forecast based on multiscale spatiotemporal graph neural network
Fine-grained pollutant concentration forecast based on deep learning is a new and promising method,and how to make full use of meteorological,spatial and temporal information is the key point.In order to cooperatively fuse the three pieces of information,we propose a pollutant concentration forecasting model based on a multiscale spatiotemporal graph neural network.This model uses the air quality model to dynamically construct the multiscale spatiotemporal graph neural network to learn the dynamic spatiotemporal relationship between pollutants.Specifically,the graph neural network is used to learn the multiscale spatial relationship between pollutants,the air quality model hybrid single-particle lagrangian integrated trajectory(HYSPLIT)is used to construct the node and edge attributes of the graph,and the attention mechanism-based gate recurret unit(GRU)is used to learn the temporal relationship between pollutant concentrations.The model not only fully considers the three influencing factors of meteorology,space and time,but also integrates the three factors into a framework for collaborative learning.Compared with the traditional mechanism model methods,the proposed method has the characteristics of flexible deployment and easy implementation.Experiments on real project datasets and public databases show that the mean absolute error of pollutant concentration is reduced by about 0.6 and the symmetric mean absolute percentage error is reduced by about 4%compared with the existing advanced method based on graph neural networks.

pollutant concentration forecastspatiotemporal datadeep learningmechanism modelgraph neural network

廖海斌、袁理、龚颢巍

展开 >

武汉纺织大学电子与电气工程学院,武汉 430200

污染物浓度预测 时空数据 深度学习 机理模型 图神经网络

国家自然科学基金项目江西省主要学科学术和技术带头人培养计划领军人才项目

6170117420204BCJ22014

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(4)
  • 18