首页|基于状态切换的杂草测绘无人机集群失效控制算法

基于状态切换的杂草测绘无人机集群失效控制算法

扫码查看
设计一套基于状态切换的杂草测绘无人机集群级联失效控制算法。首先,分析农业测绘无人机集群的作业场景特征,并基于此将杂草测绘无人机集群的单机节点状态划分为初级态、中级态和高级态3种类型;然后,结合复杂网络基本原理提出一套基于单机节点状态切换和最小负载原则的失效控制算法;最后,通过数值算例和综合对比分析验证所提出算法的有效性和最佳使用条件。可以发现,不同失效过程对集群保持结构稳定和功能稳定的影响程度不同:中级态节点初始失效时网络的受影响程度最大;高级态节点初始失效时失效控制算法的效果最为显著;单机测绘半径和集群含有的低级态单机数目是影响集群测绘面积的两个因素,二者与集群测绘面积呈正相关,且前者对于监控面积的提升效果更加显著。
Failure control algorithm of weed mapping UAV swarm based on state switching
The weed mapping UAV swarm is studied and a cascade failure control algorithm based on state switching is designed.First,we analyze the agricultural mapping UAV swarm's characteristics of the working environment,then the single-machine node state of the weed mapping UAV cluster is divided into three types:Primary state,intermediate state,and advanced state.Secondly,a set of failure control algorithms are designed based on the principle of single-node state switching and minimum load.Finally,the validity and optimal operating conditions of the algorithm are verified by numerical studies.The results show that:Different failure processes have different degrees of influence on the structural stability and functional stability of the cluster,and the network is most affected when the intermediate node fails initially.The failure control algorithm has the most significant effect when the high-state node fails;The mapping radius of a certain node and the number of low-state nodes contained in the cluster are the most important factors affecting the cluster mapping.The two factors are positively correlated with the mapping area of the UAV swarm and the former always has a more significant effect on the improvement of the monitoring area.

complex networkweed mappingUAV swarmcascading failurecontrol algorithm

何勇、徐鑫、郭晓彤

展开 >

东南大学经济管理学院,南京 210096

复杂网络 杂草测绘 无人机集群 级联失效 控制算法

国家自然科学基金国家自然科学基金江苏省自然科学基金

7217104771771053BK20201144

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(5)
  • 17