首页|基于ResNeSt网络路面状态识别的主动悬架模型预测控制

基于ResNeSt网络路面状态识别的主动悬架模型预测控制

扫码查看
为了提升不同运行工况下的路面状态识别精度及主动悬架平顺性控制性能,提出一种基于ResNeSt网络路面状态识别的主动悬架模型预测控制(MPC)方法。首先,搭建基于多路径分散注意力思想的ResNeSt网络架构,建立面向主动悬架实时控制的路面状态识别算法,采用交叉熵目标损失函数和AdamW梯度下降算法进行网络训练以及测试实验验证;然后,在此基础上设计基于路面状态识别的主动悬架MPC控制算法,根据离散状态空间方程推导悬架系统预测模型,以悬架预测输出和控制力输入为性能指标建立目标函数,并考虑不同路面的控制策略确定加权矩阵取值,在系统约束条件下,将MPC目标函数转化为二次最优规划问题的求解;最后,将所提出控制算法与被动悬架、LQG控制进行对比仿真分析,结果表明:ResNeSt网络可以快速准确地识别多种路面状态,所提出控制算法能够根据路面状态对悬架进行实时瞬态主动控制,簧载质量加速度、悬架动挠度和轮胎动载荷的均方根值平均值相比LQG控制分别降低36。56%、32。99%和36。28%。
Model predictive control of active suspension based on road surface condition recognition by ResNeSt
To improve the road state recognition efficacy and the ride comfort control performance of the active suspension system,a model predictive control(MPC)based active suspension control method is proposed based on road state recognition by the residual convolutional neural networks with split-attention(ResNeSt).First,the road state recognition algorithm scheme with respect to the active suspension control is established by the ResNeSt network considering the multi-path split attention mechanism.The proposed network is trained and tested via utilizing the cross-entropy objective loss function and the AdamW gradient descent algorithm.Then,the MPC-based active suspension control algorithm is developed based on road state recognition.Specifically,the prediction model is derived from the discrete state space equation and the objective function is constructed by the performance indexes of the prediction outputs and the control inputs.Moreover,the weighting matrix values are determined by the recognized road surface results.The objective function of the MPC is transformed into the quadratic programming(QP)to obtain the global optimum while satisfying the constraints.Comparative studies of the passive suspension and the LQR control are performed to demonstrate the effectiveness of the proposed architecture.The results show that the ResNeSt network is capable of identifying different kinds of road states with guaranteed precision and computational performance.The proposed active suspension control algorithm provides satisfactory real-time and transient active control of the suspension based on different road conditions.Compared with the LQG algorithm,quantitative results for the mean RMS values of spring mass acceleration,suspension dynamic deflection and tire dynamic load are reduced by 36.56%、32.99%and 36.28%.

road surface condition recognitionResNeStdeep learningresidual convlutional neural networksactive suspensionmodel predistive control

寇发荣、胡凯仑、陈若晨、何海洋

展开 >

西安科技大学机械工程学院,西安 710054

路面状态识别 ResNeSt 深度学习 残差卷积神经网络 主动悬架 模型预测控制

国家自然科学基金陕西省重点研发计划

512754032020GY-128

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(6)