首页|基于智能合约和CPSO_DNN的流程工艺参数可信自决策模型

基于智能合约和CPSO_DNN的流程工艺参数可信自决策模型

扫码查看
针对流程制造过程中工艺关系复杂、优化效率难保证和数据安全问题,提出一种基于智能合约和改进混沌粒子群算法的工艺参数可信自决策模型PPO-TS。首先,基于区块链技术设计适合流程制造工艺特性的数据集成与存储机制,通过数据上链技术实现数据的可信存储;然后,设计工艺参数自决策智能合约机制,利用智能合约搭建基于区块链广播式通信协议的工艺参数优化网络,启动网络并编译质量指标访问、优化自决策和决策自执行智能合约,通过自动触发工艺参数优化事务完成自决策和自执行过程;在此基础上构建基于改进混沌粒子群算法CPSO和深度神经网络DNN的优化算法CPSO_DNN,实现流程制造工艺参数优化;最后,以现场采集的某流程生产线数据为例,验证了PPO-TS模型的实用性和有效性,为流程制造工艺参数优化提供了一种新思路。
A trusted self-decisioning model of process parameters optimization based on smart contract and CPSO_DNN
Aiming at the difficulty of the complex process relationship in the manufacture of process production optimization and non-guaranteed optimizing efficiency.A trusted self-decisioning model for process parameter optimization(PPO-TS)is proposed based on smart contract technology and an improved chaotic particle swarm optimization algorithm.Firstly,data integration and storage mechanism based on blockchain are designed that are suitable for process technological characteristics,and data up-linking technology is adopted to achieve data credible storage.Then,formulate optimal decision smart contract mechanism is designed,which uses smart contract to build process parameter optimization network based on blockchain broadcast communication protocol.The data access,quality self-decision,self-decision execution smart contract are compiled after the network is started.Self-decision and self-execution are completed by automatically triggering process parameter optimization transaction.And on this basis,the optimal algorithm(CPSO_DNN)is built to complete the optimization of process manufacturing parameters.Finally,the model's availability and efficiency are verified by taking the data of the silk production line collected,which provides a new idea for the optimization of process parameters.

process manufacturingblockchainsmart contractstrusted data storageself-determination of process parametersprocess parameter optimization

刘孝保、袁智慧、张雨东、孙海彬、阴艳超、姚廷强、顾文娟

展开 >

昆明理工大学机电工程学院,昆明 650500

流程制造 区块链 智能合约 数据可信存储 工艺参数自决策 工艺参数优化

云南省科技重大专项国家自然科学基金

202302AD08000152065033

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(6)