首页|基于聚类引导和目标值和的高维多目标进化算法

基于聚类引导和目标值和的高维多目标进化算法

扫码查看
基于分解的高维多目标进化算法在处理不规则前沿优化问题时需要调整参考向量,为避免这一复杂操作,提出一种基于聚类引导和目标值和的高维多目标进化算法。该算法借助一个储存非支配解并定期更新的精英集,通过聚类引导当前种群进化,从而使得当前种群保持较好的多样性。选择个体时,根据Pareto支配关系以及目标值和衡量个体的收敛性,基于该收敛性度量方式进行非支配排序和适应值排序,从而选择收敛性较好的个体。与7种算法在2套高维多目标优化测试题上进行对比实验,实验结果表明,所提出算法能有效解决不同类型的高维多目标优化问题。
A many-objective evolutionary algorithm based on clustering and the sum of objectives
Decomposition-based many-objective evolutionary algorithms need to adjust reference vectors when solving problems with irregular Pareto fronts.To avoid this complicated operation,this paper proposes a many-objective evolutionary algorithm based on clustering and the sum of objectives(CSEA).This algorithm introduces a periodically updated elitist archive to store non-dominated solutions,which guides the evolving directions of the current population through clustering and maintains the diversity of the current population.When selecting solutions,CSEA evaluates convergence according to Pareto dominance and the sum of objectives,and then select well-converged solutions according to non-dominated sorting and fitness-based sorting.Compared with seven algorithms on two many-objective optimization test suites,CSEA is effective on many-objective optimization problems with various shapes of Pareto fronts.

multiobjective optimizationmany-objective optimizationdecompositionclusteringsum of objectives

王旭健、张峰干、姚敏立

展开 >

火箭军工程大学作战保障学院,西安 710025

多目标优化 高维多目标优化 分解 聚类 目标值和

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(10)