控制与决策2024,Vol.39Issue(10) :3225-3233.DOI:10.13195/j.kzyjc.2023.1032

自适应空间强度约束和KL信息的模糊C均值彩色噪声图像分割

Fuzzy C-means with adaptive spatial intensity constraints and KL information for color noise image segmentation

彭家磊 黄成泉 雷欢 覃小素 陈阳 周丽华
控制与决策2024,Vol.39Issue(10) :3225-3233.DOI:10.13195/j.kzyjc.2023.1032

自适应空间强度约束和KL信息的模糊C均值彩色噪声图像分割

Fuzzy C-means with adaptive spatial intensity constraints and KL information for color noise image segmentation

彭家磊 1黄成泉 2雷欢 3覃小素 3陈阳 3周丽华3
扫码查看

作者信息

  • 1. 贵州民族大学贵州省模式识别与智能系统重点实验室,贵阳 550025;贵州民族大学数据科学与信息工程学院,贵阳 550025
  • 2. 贵州民族大学贵州省模式识别与智能系统重点实验室,贵阳 550025;贵州民族大学工程技术人才实践训练中心,贵阳 550025
  • 3. 贵州民族大学数据科学与信息工程学院,贵阳 550025
  • 折叠

摘要

为了增强传统模糊C均值聚类算法的抗噪性能,保持任意像素与相邻像素间的隶属度相似性,提出一种自适应空间强度约束和KL信息的模糊C均值彩色噪声图像分割算法.首先,通过快速双边滤波器获取局部空间强度信息,用于平滑噪声像素;然后,将局部加权平均隶属度作为先验概率,并通过KL信息将其嵌入目标函数,从而优化隶属度的划分矩阵;最后,计算原始图像与双边滤波图像间的绝对强度差,用指数形式的绝对强度差作为双边滤波图像的自适应权值,并将其倒数作为原始图像的自适应权值.当混合噪声密度为30%时,所提出算法在彩色合成图像上的划分系数和划分熵分别为99.66%和0.58%,在彩色真实图像上的划分系数和划分熵分别为98.77%和2.03%.实验结果表明,与其他相关算法相比,所提出算法的抗噪性能更强、分割精度更高、稳定性更好.

Abstract

In order to enhance the anti-noise performance of traditional fuzzy C-means clustering algorithms and preserve the membership similarity between arbitrary pixels and neighboring pixels,a fuzzy C-means color noise image segmentation algorithm with adaptive spatial intensity constraints and Kullback-Leibler(KL)information is proposed.Firstly,the local spatial intensity information is obtained using a fast bilateral filter,which is used to smooth the noisy pixels.Secondly,local weighted average membership is taken as the prior probability,and it is embedded into the objective function by KL information,so as to optimize the membership partition matrix.Finally,the absolute intensity difference between original image and the bilateral filtered image is calculated,and the absolute intensity difference in exponential form is adopted as adaptive weight of the bilateral filtered image,and then its inverse is applied as adaptive weight of original image.When the mixed noise density is 30%,the partition coefficient and partition entropy of the proposed algorithm are 99.66%and 0.58%on the noise synthetic image,and then 98.77%and 2.03%on the real noise image,respectively.Experimental results show that the proposed algorithm has stronger anti-noise performance,higher segmentation accuracy and better stability in comparison with other related algorithms.

关键词

图像分割/模糊C均值/KL信息/空间强度信息/混合噪声

Key words

image segmentation/fuzzy C-means/KL information/spatial intensity information/the mixed noise

引用本文复制引用

基金项目

国家自然科学基金项目(62062024)

贵州省省级科技计划项目(黔科合基础-ZK[2021]一般342)

贵州省教育厅自然科学项目(黔教技[2022]015)

贵州省模式识别与智能系统重点实验室2022年度开放课题项目(GZMUKL[2022]KF03)

出版年

2024
控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
段落导航相关论文