首页|用户评论异质情感的主题聚类仿真

用户评论异质情感的主题聚类仿真

扫码查看
产品优化设计策略中,基于用户喜好评价信息开展产品关注度挖掘和用户满意度变化规律的预测研究至关重要。现有研究大多采用基于量表的半结构化数据分析模型,忽略了评价过程的多维度非线性决策属性,尤其是感性意象之间的耦合问题。对此,面向非结构化数据构建异质情感主题聚类仿真流程,首先利用网络爬虫获取用户在线评论文本;其次,借助Word2vec词向量进行文本数值化编码,并通过情感分析模型完成情感二分类判断,建立正向和负向情感数据集;然后,采用BTM主题聚类模型开展异质情感主题聚类;最后,输出多维评价指标量化结果。仿真结果表明,所构建的仿真流程能够准确进行二分类判断(信度检验均大于0。85),且主题聚类结果契合产品优化策略。
Topic clustering simulation of heterogeneous emotions in user comments
In a product optimization design strategy,it is very important to carry out product attention mining and prediction of user satisfaction change law based on user preference evaluation information.Most of the existing research adopts a scale-based semi-structured data analysis model,which ignores the multi-dimensional nonlinear decision-making attributes of the evaluation process,especially the coupling problem between differential kansei images.In this regard,a heterogeneous emotional theme clustering simulation process is developed for unstructured data,and the web crawler is first used to obtain the user's online comment text.Then,with the help of Word2vec,the text is numerically encoded,and the sentiment binary classification judgment is completed by the sentiment analysis model,and the positive and negative sentiment datasets are established.Then,the BTM is used to carry out heterogeneous emotional theme clustering.Finally,the quantitative results of multi-dimensional evaluation indicators are output.The results show that the constructed simulation process can accurately judge dichotomous(the reliability test is greater than 0.85),and the topic clustering results are in line with the product optimization strategy.

online commentsentiment classificationbiterm topic modeldesign decisionuser satisfactionkansei engineering

张书涛、杨志强、苏建宁、周爱民

展开 >

兰州理工大学设计艺术学院,兰州 730050

在线评论 情感分类 BTM主题聚类 设计决策 用户满意度 感性工学

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(11)