首页|基于多传感器数据融合的SA-DACNN齿轮箱故障诊断方法

基于多传感器数据融合的SA-DACNN齿轮箱故障诊断方法

扫码查看
针对单一传感器数据易受自身品质和环境的影响导致难以监控齿轮箱整体运行状况的问题,提出一种基于多传感器数据融合的 SA-DACNN(self attention-dynamic adaptive convolutional neural network)齿轮箱故障诊断方法。首先,将采集到的不同位置的传感器信号作为多通道信号,并将多通道信号同时作为网络输入;然后,设计一种多通道特征融合模块,该模块通过自适应地加权不同通道的信息,确保不同通道的重要信息能够有效地融合,解决特征级多通道数据融合问题;最后,在全连接层之前,使用带残差连接的自注意力模块,帮助网络自动学习全局信息,增强对原始振动信号的特征学习能力。在两个齿轮箱数据集中进行实验,结果表明,所提出方法具有较高的故障诊断准确率,可以满足多传感器数据融合故障诊断的任务。
SA-DACNN gearbox fault diagnosis method based on multi-sensor data fusion
To address the problem that single sensor data are easily affected by their own quality and environment,which makes it difficult to monitor the overall operating condition of gearboxes,a SA-DACNN(self attention-dynamic adaptive convolutional neural network)gearbox fault diagnosis method based on multi-sensor data fusion is proposed.Firstly,the method treats the collected sensor signals from different locations as multi-channel signals and uses the multi-channel signals as network inputs simultaneously.Then,a multi-channel feature fusion module is designed,which solves the feature-level multi-channel data fusion problem by adaptively weighting the information of different channels to ensure that the important information of different channels can be effectively fused.Finally,before the fully connected layer,a self-attentive module with residual connections is used to help the network automatically learn global information and enhance the feature learning ability of the original vibration signals.Experiments are conducted on two gearbox datasets,and the results show that the proposed method has a high fault diagnosis accuracy and can meet the task of multi-sensor data fusion fault diagnosis.

fault diagnosismulti-sensor datadata fusiongearboxconvolutional neural networkself attention

张亚洲、赵小强、惠永永、陈鹏

展开 >

兰州理工大学电气工程与信息工程学院,兰州 730050

甘肃省工业过程先进控制重点实验室,兰州 730050

兰州石化职业技术大学电子电气工程学院,兰州 730050

故障诊断 多传感器数据 数据融合 齿轮箱 卷积神经网络 自注意力

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(11)