首页|机械臂预定时间重复学习控制

机械臂预定时间重复学习控制

扫码查看
为实现不确定机械臂系统快速和高精度跟踪控制性能,提出一种基于反演算法的预定时间重复学习控制策略。通过构造非奇异预定时间虚拟控制器,有效避免传统有限时间反演控制中由虚拟控制器微分引起的奇异性问题,确保机械臂角位置跟踪误差在预定时间内收敛至原点附近邻域内。在此基础上,根据期望轨迹的周期特性,将机械臂系统的集总不确定划分为周期不确定和非周期不确定两部分,并构造全限幅重复学习更新律以准确估计和补偿周期不确定部分。同时,设计鲁棒控制律并引入终端吸引,补偿包括外部干扰在内的非周期不确定部分,实现机械臂角位置对周期性期望轨迹的高精度跟踪。最后,基于Lyapunov定理证明闭环系统稳定性和分析跟踪误差收敛性,并通过仿真结果验证所提出控制方法的有效性。
Predefined-time repetitive learning control of robotic manipulators
A backstepping-based predefined-time repetitive learning control scheme is proposed for uncertain robot manipulators to achieve rapid and high-precision tracking control performance.A non-singular predefined-time virtual controller is constructed to effectively avoid the singularity issues caused by the differentiation of the virtual controller in conventional finite-time backstepping design.It ensures that the tracking error of the robot manipulators joint positions converges to a neighborhood of the origin within the predefined time.Then,the lumped uncertainty of the manipulator is separated into periodic and non-periodic parts by considering the periodic characteristics of the desired trajectory.A fully saturated repetitive learning law is constructed to accurately estimate and compensate for the periodic uncertainty.Meanwhile,a robust control law is developed and the terminal attracting technique is applied to guarantee the effective compensation of the non-periodic uncertainty including external disturbances,such that the high-precision tracking of the robot manipulators joint positions is achieved.Finally,the stability of the closed-loop system and the error convergence performance of the proposed scheme are analyzed through the Lyapunov stability synthesis.The effectiveness of the proposed control method is verified by comparative simulations.

robot manipulatorpredefined-time controlrepetitive learning lawbackstepping recursive algorithmperiodic uncertaintytracking control

李亚倩、陈强、施卉辉、张智皓、陈鹏

展开 >

浙江工业大学信息工程学院,杭州 310023

机械臂 预定时间控制 重复学习律 反演递推算法 周期不确定 跟踪控制

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(11)