控制与决策2024,Vol.39Issue(11) :3772-3780.DOI:10.13195/j.kzyjc.2023.1121

自适应分组和拥挤距离更新的多目标狼群算法

Multi-objective wolf pack algorithm based on adaptive grouping strategy and crowding distance

赵嘉 吕丰 肖人彬 樊棠怀 董文飞 王晖
控制与决策2024,Vol.39Issue(11) :3772-3780.DOI:10.13195/j.kzyjc.2023.1121

自适应分组和拥挤距离更新的多目标狼群算法

Multi-objective wolf pack algorithm based on adaptive grouping strategy and crowding distance

赵嘉 1吕丰 1肖人彬 2樊棠怀 1董文飞 1王晖1
扫码查看

作者信息

  • 1. 南昌工程学院信息工程学院,南昌 330000;南昌工程学院南昌市智慧城市物联感知与协同计算重点实验室,南昌 330099
  • 2. 华中科技大学人工智能与自动化学院,武汉 430074
  • 折叠

摘要

鉴于狼群算法在单目标优化问题中具有良好的求解能力,借助狼群的生物习性并用于求解多目标优化问题,提出自适应分组和拥挤距离更新的多目标狼群算法(MOWPA-AG).首先,模拟狼群中的家族聚集性,提出兼顾种群多样性和分散搜索的自适应分组策略,对种群进行分层并帮助种群扩散检索Pareto最优解;然后,设计基于拥挤距离的群体更新机制,使种群保持快速进化的同时获得最优解集;为验证算法的性能,在9种不同的基准测试问题上进行测试,并与经典及新进多目标优化算法进行比较以验证MOWPA-AG的有效性;最后,将MOWPA-AG用于解决实际工程四杆桁架结构问题,以体现所提出算法的普适性.

Abstract

In view of the wolf pack algorithm has good solving ability in single objective optimization problems,a multi-objective wolf pack algorithm(MOWPA-AG)based on adaptive grouping and updating of crowded distance is proposed by taking the advantages of the wolf pack biological habit and being used to solve multi-objective optimization problems.Firstly,an adaptive grouping strategy considering population diversity and dispersed search is proposed to simulate family aggregation in wolf packs.The strategy stratifies populations,separates populations and helps population diffusion search Pareto optimal solutions.Then,a population renewal mechanism based on crowding distance is designed,which enables the population to maintain rapid evolution while obtaining the optimal solution set.In order to verify the performance of the proposed algorithm,nine different benchmark testing problems are tested,and the effectiveness of the proposed algorithm is verified by comparing with other classic and recent multi-objective optimization algorithms.Finally,the MOWPA-AG is applied to solve the problem of four-bar truss structure in practical engineering,which shows the universality of the proposed algorithm.

关键词

群智能算法/多目标优化/狼群算法/Pareto最优/自适应分组/工程优化

Key words

swarm intelligence algorithm/multi-objective optimization/wolf pack algorithm/Pareto optimal/adaptive grouping/engineering optimization

引用本文复制引用

出版年

2024
控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
段落导航相关论文