首页|自生成兵棋AI:基于大语言模型的双层Agent任务规划

自生成兵棋AI:基于大语言模型的双层Agent任务规划

扫码查看
ChatGPT所代表的大语言模型对AI领域产生了颠覆性影响,但它主要关注自然语言处理、语音识别、机器学习和自然语言理解。对此,将大语言模型应用于智能决策领域,将大语言模型置于决策中心,并构建以大语言模型为核心的Agent体系结构。基于此,进一步提出双层Agent任务规划,通过自然语言的交互,发出和执行决策指令,并通过兵棋推演模拟环境进行仿真验证。通过兵棋对抗模拟实验,发现大语言模型的智能决策能力明显优于常用的强化学习AI,并且其智能性、可理解性都更强。实验表明,大语言模型的智能性与Prompt密切相关。此外,将大语言模型从以往的人机交互领域拓展到智能决策领域,对智能决策的发展具有重要的参考价值和意义。
Self generated wargame AI:Double layer agent task planning based on large language model
The large language model,exemplified by ChatGPT,has brought a disruptive impact to the field of artificial intelligence,with a primary focus on natural language processing,speech recognition,machine learning,and natural language understanding.This paper innovatively applies the large language model to the field of intelligent decision-making,places the large language model in the decision-making center,and constructs an Agent architecture with the large language model as the core.Building on this,it further introduces a two-tier Agent task planning strategy,issuing and executing decision commands through natural language interactions,and conducting simulation validations within a wargame simulation environment.Through game confrontation simulation experiments,we find that the intelligent decision-making capability of large language models is significantly superior to that of commonly used reinforcement learning AI.This superiority is apparent in terms of intelligence,comprehensibility,and generalizability.And through experiments,it is found that the intelligence of the large language model is closely related to Prompt engineering.This work also expands the application of large language models from previous human-computer interactions to the realm of intelligent decision-making,providing valuable insights and significance for the advancement of intelligent decision-making.

self generated wargame AIlarge language modelChatGPTintelligent decision-makingwargamereinforcement learning

孙宇祥、赵俊杰、解宇轩、喻车澄、周献中

展开 >

南京大学工程管理学院,南京 210093

南京大学智能装备新技术研究中心,南京 210093

自生成兵棋AI 大型语言模型 ChatGPT 智能决策 兵棋推演 强化学习

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(12)