首页|新息优先一致分数阶离散GM(1,1)模型及应用

新息优先一致分数阶离散GM(1,1)模型及应用

扫码查看
一致分数阶GM(1,1)(CFGM(1,1))模型是一种基于一致分数阶累加的单变量灰色预测模型。一致分数阶累加生成算子不满足灰色预测理论中极其重要的新息优先原则,且CFGM(1,1)模型存在从差分方程到微分方程的转换误差。为此,提出一种新息优先一致分数阶累加生成算子,结合离散GM(1,1)模型的思想,构建新息优先一致分数阶离散GM(1,1)模型,从理论上导出新算子满足新息优先原则的条件,并用两类智能优化算法寻求模型中的最优累加参数。两个实际案例表明,所提模型不仅能满足新息优先原则,还可以有效克服CFGM(1,1)模型中的转换误差,具有更优的拟合和预测精度。
New information priority conformable fractional discrete GM(1,1)model and applications
The conformable fractional GM(1,1)(CFGM(1,1))model,which is based on the conformable fractional accumulation,is a recently proposed univariate grey prediction model.The conformable fractional accumulated generating operator does not satisfy the new information priority principle,which is extremely important in grey prediction theory.And the CFGM(1,1)model suffers from transformation errors from difference equation to differential equation.To address these two issues,a new information priority conformable accumulated generating operator is proposed.By combining the idea of the discrete GM(1,1)model,a new information priority conformable fractional discrete GM(1,1)model is constructed.The conditions for the novel operator to satisfy the new information priority principle are theoretically derived.Meanwhile,two kinds of intelligent optimization algorithms are adopted to determine the optimal accumulation parameters.Two practical examples demonstrate that the proposed model not only satisfies the new information priority principle but also effectively overcomes the transformation errors in the CFGM(1,1)model,resulting in better fitting and prediction accuracy.

grey prediction systemconformable fractional order accumulationnew information prioritydiscrete grey model

沈琴琴、曹阳、王鲁欣、高赛昆

展开 >

南通大学交通与土木工程学院,江苏南通 226019

南通大学数学与统计学院,江苏南通 226019

南通大学信息科学技术学院,江苏南通 226019

灰色预测系统 一致分数阶累加 新息优先 离散灰色模型

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(12)