首页|基于多场景建模的动态鲁棒多目标进化优化算法

基于多场景建模的动态鲁棒多目标进化优化算法

扫码查看
为了解决实际生产中的动态多目标优化问题,提出一种基于多场景建模的动态鲁棒多目标进化优化算法。首先,所提出算法将不同环境下的问题视为不同场景,并通过相似度计算和场景聚类建立多个场景;然后,利用改进的多场景多目标进化优化算法求解各场景的折中解,当环境发生变化时,根据新问题所属的场景类,直接应用该场景类的折中解作为新问题的最优解,从而加快算法的响应速度;最后,通过对场景类中问题的约减,保留最具代表性的问题,逐步提高算法的鲁棒性,并降低解的切换成本。实验结果表明,所提出算法能够快速响应环境变化,并提高解的鲁棒性。
Dynamic robust multi-objective evolutionary optimization algorithm based on multi-scenario modeling
This paper proposes a dynamic robust multi-objective evolutionary optimization algorithm based on multi-scenario modeling,aiming to address dynamic multi-objective optimization problems in practical production.The algorithm treats problems in different environments as different scenarios and establishes multiple scenarios through similarity calculation and scenario clustering.Subsequently,it utilizes an improved multi-scenario multi-objective evolutionary optimization algorithm to find compromise solutions for each scenario.When the environment changes,the algorithm directly applies the compromise solution of the corresponding scenario class as the optimal solution for the new problem,thus speeding up the algorithm's response rate.Through reducing the number of problems in scenario classes and retaining the most representative ones,the algorithm gradually improves its robustness and reduces solution switching costs.Experimental results demonstrate that the proposed algorithm can rapidly respond to environmental changes and enhance solution robustness.

dynamic optimizationmultiple scenariosmulti-objectiverobust optimizationevolutionary algorithm

徐标、吕修豪、李文姬、范衠、巩敦卫、贺杰

展开 >

汕头大学工学院,广东汕头 515063

梧州学院广西机器视觉与智能控制重点实验室,广西梧州 543002

电子科技大学(深圳)高等研究院,广东 深圳 518110

青岛科技大学自动化与电子工程学院,山东青岛 266100

展开 >

动态优化 多场景 多目标 鲁棒优化 进化算法

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(12)