首页|基于双层交互Q学习的路网抢修和物资配送联合调度

基于双层交互Q学习的路网抢修和物资配送联合调度

扫码查看
受损路网修复和物资配送是灾后应急响应初期的两个重要环节,已有研究大都将路网修复和物资配送割裂开来考虑,难以满足实际救援需求。为此,在构建抢修队与运输队联合调度的路网模型的基础上,引入马尔科夫决策过程来模拟抢修队的修复活动和运输队的救援活动,分别设计相应的状态、动作集和即时奖励函数,并提出一种基于双层交互Q学习的路网抢修和物资配送联合调度算法。对比实验表明,所提方法能有效提高路网抢修和物资配送的效率,可为应急响应初期的救援与处置提供及时可靠的物资保障。
Joint scheduling of road network restoration and emergency relief supplies delivery based on double-layer interactive Q-learning
Road network restoration and emergency relief supplies delivery are two important aspects in the early stages of post-disaster emergency response.Most existing studies have considered road network restoration and emergency relief supplies delivery separately,making it difficult to meet the actual needs of emergency rescue and disposal.Therefore,a road network model for joint scheduling of repair crews and transportation teams is first constructed.Next,the Markov decision process is adopted to simulate the activities of repair crews and transportation teams,in which the corresponding state spaces,action spaces,and reward functions are designed,respectively.Then,a joint scheduling algorithm for road network restoration and emergency relief supplies delivery is developed based on customised double-layer interactive Q-learning.Finally,comparative experiments demonstrate that the proposed algorithm can improve the efficiency and effectiveness of road network restoration and emergency relief supplies delivery,and provide timely and reliable emergency relief supplies support for the rescue and disposal in the early stages of post-disaster emergency response.

post-disaster emergency responseroad network rehabilitationmaterial distributionMarkov decision makingtwo-layer interactive Q-learningjoint scheduling optimisation

张国富、朱前顺、苏兆品、岳峰

展开 >

合肥工业大学计算机与信息学院,合肥 230601

工业安全与应急技术安徽省重点实验室(合肥工业大学),合肥 230601

安全关键工业测控技术教育部工程研究中心,合肥 230601

灾后应急响应 路网修复 物资配送 马尔科夫决策 双层交互Q学习 联合调度优化

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(12)