首页|针对信息物理系统的自生成ε-隐性最优欺骗攻击策略设计

针对信息物理系统的自生成ε-隐性最优欺骗攻击策略设计

扫码查看
近年来,信息物理系统网络安全问题成为一大研究热点。以攻击者角度研究攻击设计问题可有效评估系统对网络攻击的脆弱性并为设计网络保护措施提供理论依据。鉴于此,在ε-隐性下研究针对信息物理系统远程状态估计的最优欺骗攻击设计问题。首先,与需要额外滤波器和历史数据在线计算真实新息的相关结果不同,提出一种利用离线生成的攻击信号篡改传感器测量值以降低系统性能的自生成攻击模型,使攻击更易实现。随后,推导得出该攻击下远程估计误差以量化攻击效果,并将攻击设计问题转化为多变量受限二次优化问题。不同于相关结果的恒定均值,模型采用更具一般性的时变均值,使优化问题包含更多决策变量且相关结果中的攻击优化方法无法直接求解。因此,利用K-L(Kullback-Leibler)散度和互信息的相关统计学性质将问题等价转化。再结合拉格朗日乘数法和所提出的参数特征关联覆盖法得到最优攻击策略,使其在ε-隐性下最大化远程估计误差。最后,通过仿真实例验证结果的有效性。
Optimal off-line generated ε-stealthy deception attack strategy design in cyber-physical system
In recent years,network security of cyber-physical systems has become a hot research topic.Investigating the problem of designing attacks from the attacker's perspective can effectively evaluate the vulnerability of the system to network attacks,and provide theoretical basis for designing network protection methods.For this reason,this paper investigates the problem of designing the optimal ε-stealthy deception attacks against remote state estimation in cyber-physical systems.Firstly,different from the related results which require extra filters and historical data to calculate the true innovation online,this paper proposes a self-generated attack model which uses off-line generated attack signals to tamper with the sensor measurements and deteriorate the estimation performance,such that the attacks are more easily to be implemented.Subsequently,the remote estimation error under the attack is derived to quantify the attack effect,based on which,the attack design problem is transformed into a variable optimization problem.Since the model uses the more general time-varying mean,the optimization problem contains more decision variables,which cannot be solved directly by the attack optimization methods in the related results.Therefore,the problem is equivalently transformed by using the relevant statistical properties of K-L divergence and mutual information.Furthermore,by combining the Lagrange multiplier method and the optimization method with the covering by the related parameter characteristics,the optimal attack strategy is obtained to maximize the remote estimation error under the ε-stealthiness.Finally,simulation examples are given to verify the validity of the results.

cyber-physical systemsself-generated attackremote state estimationε-stealthinessKullback-Leibler divergencemutual information

单华晟、李一刚

展开 >

沈阳工业大学人工智能学院,沈阳 110870

信息物理系统 自生成攻击 远程状态估计 ε-隐性 K-L散度 互信息

2024

控制与决策
东北大学

控制与决策

CSTPCD北大核心
影响因子:1.227
ISSN:1001-0920
年,卷(期):2024.39(12)