首页|基于AI的CT定量分析对20mm以下非典型磨玻璃结节肺腺癌浸润性的预测价值

基于AI的CT定量分析对20mm以下非典型磨玻璃结节肺腺癌浸润性的预测价值

Quantitative CT Analysis Based on Artificial Intelligence in Predicting the Invasiveness of Lung Adenocarcinoma with Ground Glass Nodules Less Than 20 mm

扫码查看
目的 探讨基于人工智能(AI)的CT定量分析预测20 mm以下磨玻璃结节(GGO)肺腺癌浸润性的临床价值.方法 回顾性分析经手术病理证实为肺腺癌(<20 mm)的145例GGO患者术前胸部薄层高分辨CT影像资料,其中微浸润性腺癌(MIA)70例,浸润性腺癌(IAC)75例.通过AI肺结节软件获取GGO的直方图、熵及反映结节大小的CT定量参数.采用独立样本t检验比较IAC和MIA两组GGO的CT定量参数的差异,通过单变量和二元Logistic回归分析筛选IAC的独立预测因子,并采用ROC曲线评估各单因素参数对GGO侵袭性的预测效能.结果 两组GGO的长径、短径、平均直径、体积、平均CT值、最大CT值、最小CT值、标准差、中位数及熵组间差异均有统计学意义(P<0.05).Logistic回归和ROC曲线分析显示熵、平均CT值和体积是预测GGO浸润性的独立预测因子,当其阈值>8.6、>-516 HU、>937.0 mm3时,预测GGO浸润性的敏感度和特异度分别为77.03%、81.30%、73.67%和74.65%、67.14%、81.71%,联合3个指标预测IAC的效能最佳,AUC为0.918,敏感度和特异度分别为86.67%和88.50%.结论 基于AI的CT定量参数有助于评估GGO的浸润性,熵、平均CT值和体积是预测IAC的重要参数指标,联合3个指标能提高预测效能,为临床精准治疗提供参考.
Objective To investigate the value of quantitative parameters CT analysis based on artificial intelligence(AI)in predicting the invasiveness of lung adenocarcinoma with ground glass nodules(GGO)less than 20 mm.Methods The preoperative chest HRCT images of 145 patients with GGNs less than 20 mm conformed adenocarcinoma by surgery and pathology were analyzed retrospectively,including 70 cases of microinvasive adenocarcinoma(MIA)and 75 cases of inva-sive adenocarcinoma(IAC).The CT qualitative parameters of GGN obtained from AI between MIA and IAC groups were compared using independent sample t-test.The independent predictors of IAC were screened by Univariate and binary Lo-gistic regression analysis,and the ROC curve was performed to evaluate the prediction efficacy of these parameters.Results The long diameter,short diameter,mean diameter,volume,CT average,maximum CT value,minimum CT value,media,standard deviation and entropy of GGNs had statistical difference between the two groups(P<0.05).Logistic regression and the ROC curve analysis showed that the entropy,CT average and volume were the independent risk factors for predicting invasiveness of GGO.Their threshold values were greater than 8.6、-516 HU and 937 mm3,with the corresponding sensi-tivity and specificity were 77.03%,81.30%,73.67%and 74.65%,67.14%,81.71%,respectively.The combination of three parameters had better predictive value than when used alone,with the AUC was 0.918,the sensitivity and specificity were 86.67%and 88.50%.Conclusion Quantitative CT analysis based on AI was helpful to predict the invasiveness of GGO.The combination of the entropy,average CT value and volume had better predictive value than those indexes alone,Which may provide reference for surgery.

Lung neoplasmsGround-glass nodulesTomography,X-ray computed

梁冬云、周建军、曾蒙苏、林冲、郭屹、唐启英

展开 >

361015 厦门,复旦大学附属中山医院厦门医院放射科

厦门市影像医学临床医学研究中心

200032 上海,复旦大学附属中山医院放射科

肺癌 磨玻璃结节 浸润性 体层摄影术,X线计算机

福建省科技厅计划项目引导性项目福建省卫生健康科研人才培养项目医学创新课题

2019D0252019CXB33

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(1)
  • 6