首页|深度学习图像重组算法对提高薄层增强CT胰腺癌图像质量及肿瘤显著性的价值

深度学习图像重组算法对提高薄层增强CT胰腺癌图像质量及肿瘤显著性的价值

Deep Learning Image Reconstruction Improving Image Quality and Lesion Conspicuity of Pancreatic Carcinoma in Thin-Slice Contrast-Enhanced CT

扫码查看
目的 探讨深度学习图像重组(DLIR)算法提高胰腺导管腺癌(PDAC)患者薄层增强CT(CECT)扫描的图像质量及肿瘤显著性的可行性,并与滤波反投影(FBP)算法和基于混合模型的自适应统计迭代重组(ASIR-V)算法进行对比.方法 回顾性分析经病理证实为PDAC且术前行双期CECT扫描的44例患者,将门静脉期图像的原始数据采用FBP、60%ASIR-V及低(L)、中(M)和高(H)强度水平的DLIR算法重组为0.625 mm的薄层图像.分别采用方差分析和Friedman检验比较各组间客观评估指标(噪声值、图像纹理、低对比度分辨率、高对比度分辨率)和主观评估指标(图像噪声、锐利度、总体图像质量和肿瘤显著性).结果 DLIR组图像纹理和低对比度分辨率均与FBP组相当但均优于60%ASIR-V组,DLIR组噪声值显著低于FBP组和60%ASIR-V组(P均<0.05).DLIR组各主观评估指标均优于或相当于FBP组和60%ASIR-V组.随着DLIR重组强度增大,高对比度分辨率和锐利度评分变化不大,低对比度分辨率和噪声变低,图像纹理变模糊,总体图像质量和肿瘤显著性评分增高.结论 DLIR可显著改善薄层增强CT图像的图像质量,提高PDAC的肿瘤显著性.
Objective To investigate the feasibility of deep learning image reconstruction(DLIR)algorithm in impro-ving the image quality of thin-slice contrast-enhanced CT(CECT)scan and the lesion conspicuity of pancreatic ductal ade-nocarcinoma(PDAC)as compared to filtered back projection(FBP)and hybrid model-based adaptive statistical iterative reconstruction(ASIR-V).Methods A retrospective analysis was performed on 44 patients with pathologically confirmed PDAC who underwent preoperative dual-phase CECT scanning.The raw data from portal-venous images were reconstructed using FBP,60%ASIR-V,and DLIR(low,medium,and high strength levels)algorithms at a slice thickness of 0.625 mm.Analysis of variance and Friedman test were used to compare objective(noise in HU,image texture,low-contrast res-olution,high-contrast resolution)and subjective(image noise,sharpness,overall image quality and tumor conspicuity)in-dicators between groups.Results The image texture and low-contrast resolution of DLIR were comparable to FBP but better than 60%ASIR-V,and the noise values of DLIR were lower compared to FBP and 60%ASIR-V(all P<0.05).All subjective indicators of DLIR were better than or similar to FBP and 60%ASIR-V.With the increase of DLIR strength lev-el,the high-contrast resolution and sharpness scores did not change significantly,the low-contrast resolution and noise de-creased,the image texture is blurred,and the overall image quality and tumor conspicuity increased.Conclusion DLIR can significantly improve the image quality of thin-slice enhanced CT images and enhance the lesion conspicuity of PDAC.

TomographyX-ray computedPancreatic cancerImage qualityDeep learning image reconstruction

吕培杰、刘娜娜、王会霞、李臻、陈岩、詹鹏超、高剑波

展开 >

450052 郑州大学第一附属医院放射科

450052 郑州大学第一附属医院介入放射科

体层摄影术,X线计算机 胰腺癌 图像质量 深度学习重组算法

河南省重点研发与推广专项(科技攻关计划)河南省高等学校重点科研项目省部共建重点项目

23210231108722A320057SBGJ202102099

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(5)
  • 5