首页|基于CT影像组学预测非肌层浸润性膀胱癌术后复发的临床价值

基于CT影像组学预测非肌层浸润性膀胱癌术后复发的临床价值

Clinical Value of CT Radiomics Model in Predicting Postoperative Recurrence of Patients with Non-Muscle-Invasive Bladder Cancer

扫码查看
目的 探讨基于CT图像构建的影像组学模型在预测非肌层浸润性膀胱癌(NMIBC)术后复发中的价值.方法 搜集2014年1月至2017年12月在本中心接受经尿道膀胱肿瘤电切术(TURBT)的311例NMIBC患者的一般资料,按照7∶3的比例随机分配至训练集(218例)与验证集(93例).应用Pyradiomics包提取术前CT图像的影像组学特征,采用最小绝对收缩和选择算法(LASSO)筛选特征并建立Rad评分.通过Cox比例风险模型确定独立预后因素并构建列线图预测模型.在训练集和验证集中评估并验证该模型的预测效能、一致性与临床实用性,并和EORTC复发评分进行比较.结果 基于LASSO回归模型,研究共筛选出5个影像组学特征,并建立Rad评分.多因素分析结果显示,pT分期、组织学分级与Rad评分是术后复发的独立预测因素(P<0.05).根据以上因素建立Rad列线图预测模型,该模型的预测一致性良好,并且其AUC值(训练集0.762、验证集0.828)和临床实用性均高于EORTC复发评分(训练集0.702、验证集0.763).根据该模型可将全组患者分为3个复发风险组,5年复发率分别为15.6%、45.2%和89.6%(P<0.001).Rad复发分级可以在EORTC低、中、高危组中区分具有不同复发风险的人群(P均<0.05).结论 基于CT图像构建的影像组学模型能够准确预测NMIBC患者的TURBT术后复发风险,有利于指导临床治疗决策的制定.
Objective To investigate the value of the radiomics model based on CT images in predicting postoperative recurrence of patients with non-muscle-invasive bladder cancer(NM1BC).Methods The clinicopathological data of 311 patients with NMIBC who underwent transurethral resection of bladder tumor(TURBT)at our institution between January 2014 and December 2017 were collected.The patients were randomly classified into training(n=218)and validation(n=93)sets in a 7∶3 ratio.Radiomics features were extracted from the preoperative CT images using the PyRadiomics package.We used the least absolute shrinkage and selection operator(LASSO)regression model to select the optimal com-bination of the radiomics features and to establish a prognostic classifier,the Rad score.The COX proportional hazards mod-el was used to identify the independent prognostic factors,and a nomogram was then constructed based on these factors.The predictive accuracy,good fit,and clinical utility of the nomogram were evaluated in the training and validation sets,and were compared with the EOTRC recurrence score.Results Using the LASSO model,we identified 5 radiomics features and de-veloped a formula to calculate the Rad score.Multivariate analysis revealed that pT stage,histological grade,and the Rad score were independent predictors of recurrence(P<0.05).A Rad nomogram combining these 3 factors was constructed based on these factors.The nomogram had a good fit as well as higher AUC values(training set:0.762 vs.0.702;valida-tion set:0.828 vs.0.763)and better clinical utility than the EOTRC recurrence score.The Rad nomogram divided the en-tire cohort into three risk groups,with 5-year recurrence rates of 15.6%,45.2%,and 89.6%,respectively(P<0.001).Moreover,The Rad recurrence grading can differentiate between those with different risks of recurrence in the low,interme-diate,and high risk groups of EORTC(P for trend<0.05).Conclusion The CT radiomics model can accurately pre-dict postoperative recurrence of NMIBC patients following TURBT,which may assist in clinical decision process.

BladdercancerRadiomicsMachine learningRecurrence

于昕冉、冯兵

展开 >

067000 河北,承德医学院附属医院重症医学科

膀胱癌 影像组学 机器学习 复发

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(5)
  • 4