首页|基于CCTA的冠状动脉周围脂肪组织影像组学对不良心血管事件的预测价值

基于CCTA的冠状动脉周围脂肪组织影像组学对不良心血管事件的预测价值

Predictive Value of CCTA-Based Pericoronary Adipose Tissue Imaging for Adverse Cardiovascular Events

扫码查看
目的 评估基于冠状动脉CT血管造影(CCTA)的冠状动脉周围脂肪组织(PCAT)影像组学特征识别疑似冠心病患者未来5年内发生主要不良心血管事件(MACE)的预测价值.方法 回顾性分析疑似冠心病且行CCTA检查的患者,将5年内发生MACE事件的患者作为病例组(205例),对同期数据库内未发生MACE事件的患者作为对照组(205例),通过使用LASSO选择的PCAT影像组学特征和脂肪衰减指数(FAI)分别建立模型,并构建两者的联合模型,采用ROC曲线、决策曲线及校准曲线比较3种模型的预测效能.结果 在评估未来5年内发生MACE事件的预测价值中,PCAT影像组学模型(AUC=0.94,0.89)优于FAI模型(AUC=0.59,0.53),二者的AUC值具有显著的差异(P<0.05),联合模型(AUC=0.96,0.94)在评估该事件的预测能力有所提高,以上3种预测模型的校正曲线均具有较好的拟合性(P>0.05).结论 基于CCTA的PCAT影像组学模型在识别未来可能发生MACE事件的疑似冠心病患者中能够比FAI模型提供更多的预测信息,并且两者的联合模型可以进一步提高识别可能发生MACE事件的预测能力.
Objective To evaluate the predictive value of pericoronary adipose tissue(PCAT)imaging features based on coronary CT angiography(CCTA)to identify major adverse cardiovascular events(MACE)in patients with suspected coronary heart disease in the next 5 years.Methods Retrospective analysis was performed on patients suspected of coro-nary heart disease who underwent CCTA examination.Patients with MACE events were selected as case group(205 cases),and patients without MACE events in the database during the same period were selected as the control group(205 cases).PC AT imaging features selected by LASSO and Fat Attenuation Index(FAI)were respectively modeled,and a combined model of the two was constructed,and the predictive efficiency of the three models was compared by ROC curve,decision curve and calibration curve.Results The PCAT radiomics model(AUC=0.94,0.89)was superior to the FAI model(AUC=0.59,0.53)in evaluating the predictive value of MACE events in the next 5 years,and the AUC values of the two models were significantly different(P>0.05).The predictive power of the combined model(AUC=0.96,0.94)in asses-sing this event has improved,and the calibration curves of the above three prediction models all had good fit(P<0.05).Conclusion The PCAT radiomics model based on CCTA can provide more predictive information than the FAI model in i-dentifying suspected CAD patients who may have MACE events in the future,and the combined model of the two can further improve the predictive ability of identifying possible MACE events.

Coronary CT angiographyPericoronary adipose tissueMajor adverse cardiovascular eventsRadiomics Fat attenuation index

吴月、胡亚辉、张新伟、栗岩、邢艳

展开 >

830011 乌鲁木齐,新疆医科大学第一附属医院影像中心

冠状动脉CT血管造影 冠状动脉周围脂肪组织 主要不良心血管事件 影像组学 脂肪衰减指数

国家自然科学基金

82160334

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(6)
  • 20