首页|基于临床-MRI形态学指标预测胎盘植入性疾病不良临床结局模型的构建与验证

基于临床-MRI形态学指标预测胎盘植入性疾病不良临床结局模型的构建与验证

A Model Predictive for Adverse Clinical Outcomes Based on Clinical-MRI Morphological Indicators in Pacenta Accreta Spectrum Disorders

扫码查看
目的 探讨基于临床-MRI形态学指标构建的模型能否为胎盘植入性(placenta accreta spectrum,PAS)疾病的不良临床结局提供稳健的预测.方法 回顾性分析来自两个医疗中心的125例PAS孕妇的资料,将其分为训练集(内部数据集,85例)和外部测试集(外部数据集,40例).PAS不良临床结局定义为术中出血超过1500 ml和/或行子宫切除术.本研究提取5个MRI形态学指标[宫颈管长度、子宫下段膨隆比值、胎盘内T2(T2WI)低信号带面积、胎盘内增粗血管直径和面积]以及6个PAS临床高危因素(年龄、孕周、孕次、产次、剖宫术次数和清宫术次数)作为模型输入,构建了一个以XGBoost为算法基础的PAS不良临床结局预测模型(低风险vs.高风险).此外,还采用五折交叉验证和多中心外部测试的策略验证模型的稳定性和泛化性能.最后,计算单一特征的Shapley Ad-ditive exPlanation(SHAP)量探索每个特征对模型决策的贡献.结果 对于PAS不良临床结局(低风险vs.高风险)预测模型,五折交叉验证的ROC曲线下面积(AUROC)分别为0.94、0.86、0.87、0.93和0.92,准确率分别为92%、81%、81%、85%和85%.最优模型的训练集和测试集AUROC分别为0.94和0.85,均落在95%置信区间内,其准确率分别为92%和78%,敏感度分别为93%和80%,特异度分别为92%和80%.结论 基于临床-MRI形态学指标构建的PAS孕妇不良临床结局预测模型可为术前评估PAS不良临床结局发生风险提供一个强有力的依据.
Objective This study investigates whether a model constructed based on clinical-MRI morphological indica-tors can provide a robust prediction for adverse clinical outcomes of placenta accreta spectrum disorders(placenta accreta spectrum,PAS).Methods Retrospective analysis was conducted on data from 125 pregnant women with placenta accreta spectrum disorders(PAS)from two medical centers.The data were divided into a training set(60 cases from center 1),a validation set(25 cases from center 1),and an external testing set(40 cases from center 2).Adverse clinical outcomes of PAS were defined as intraoperative bleeding exceeding 1000 milliliters and/or hysterectomy.Five MRI morphological indica-tors(cervical length,lower uterine segment bulging ratio,area of T2(T2 weighted image,T2 WI)low signal band in the placenta,diameter and area of thickened blood vessels in the placenta)and six clinical high-risk factors of PAS(age,ges-tational week,parity,number of previous cesarean sections,and number of previous curettages)were extracted as model inputs.A predictive model for adverse clinical outcomes of PAS(low risk vs.high risk)was constructed using XGBoost as the algorithm based on these inputs.Furthermore,we employed a five-fold cross-validation and a multi-center external tes-ting strategy to verify the stability and generalization performance of the model.Finally,we also calculated the SHAP value of each individual feature to explore their contributions to the model decisions.Results Regarding the predictive model for adverse clinical outcomes of PAS(low risk vs.high risk),the AUROC values obtained from the five-fold cross-valida-tion were 0.94,0.86,0.87,0.93,and 0.92,and the corresponding accuracies were 0.92,0.81,0.81,0.85,and 0.85,respectively.The optimal model achieved an AUROC of 0.94 on the validation set and 0.85 on the testing set,both falling within the 95%confidence interval.The corresponding accuracies were 0.92 and 0.78,the sensitivities were 0.93 and 0.80,and the specificities were 0.92 and 0.80,respectively.Conclusion This study demonstrates that a predictive model for adverse clinical outcomes of PAS in pregnant women,constructed based on clinical-MRI morphological indices,can provide a strong basis for preoperative risk assessment of adverse clinical outcomes of PAS.

Placenta accreta spectrumMagnetic resonance imagingAdverse clinical outcome

曾浩扬、李俊凯、刘伟豪、杨焕程、杨忠、袁阳光、吴翔、梅航汝、万璐、刘翰林

展开 >

518000 深圳大学第三附属医院(深圳市罗湖医院集团)放射科

汕头大学医学院罗湖临床学院(深圳市罗湖医院集团)

深圳市人民医院(暨南大学第二临床医学院)放射科

518000 深圳大学第三附属医院(深圳市罗湖医院集团)泌尿外科

深圳市人民医院(暨南大学第二临床医学院)妇产科

展开 >

胎盘植入性疾病 磁共振成像 不良临床结局

深圳市医学研究专项汕头大学医学院大学生创新创业训练计划

A2301008S202310560129

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(6)
  • 17