首页|基于功能性肝脏影像评分的肝切除术后肝衰竭预测模型的构建和应用

基于功能性肝脏影像评分的肝切除术后肝衰竭预测模型的构建和应用

Construction and Application of A Liver Failure Prediction Model Based on Functional Liver Imaging Score in Post-Hepatectomy Patients

扫码查看
目的 基于通过钆塞酸二钠(Gd-EOB-DTPA)增强MRI图像获得的功能性肝脏影像评分(FLIS),构建肝细胞癌(HCC)患者肝切除术后肝衰竭(PHLF)的预测模型并验证其诊断效能.方法 搜集接受根治性肝切除术的927例HCC患者的一般临床资料、病理及Gd-EOB-DTPA增强MRI影像资料,以7∶3的比例将患者随机分为训练集(n=647)及验证集(n=280).采用多因素Logistic回归分析筛选发生PHLF的独立危险因素,并建立列线图预测模型.绘制受试者工作特征曲线(ROC)以评估模型对PHLF的预测效能.结果 Logistic回归模型分析显示FLIS评分降低(OR=0.456,P<0.001)、大范围肝切除(OR=1.702,P=0.023)、凝血酶原时间(PT)延长(OR=1.229,P=0.009)、血小板计数(PLT)减少(OR=0.996,P=0.005)是PHLF发生的独立预测因素.以4个独立预测因素为基础构建的预测模型的曲线下面积(AUC)值在训练集中为0.791,在验证集中为0.772.结论 基于FLIS评分、大范围肝切除、PT和PLT所建立的PHLF预测模型具有较高的诊断效能,可以较好地指导临床术前评估和术前决策.
Objective To construct a predictive model for post-hepatectomy liver failure(PHLF)in patients with hepa-tocellular carcinoma(HCC)based on the liver function imaging score(FLIS)obtained by gadoxetic acid-enhanced mag-netic resonance imaging(MRI)hepatobiliary phase images,and to validate the diagnostic efficacy for PHLF.Methods General clinical data,pathological information,and gadoxetic acid-enhanced MRI images were collected from a total of 927 HCC patients who underwent radical hepatectomy.The patients were randomly divided into training set(n=647)and vali-dation set(n=280)according to the proportion of 7∶3.Multivariate Logistic regression analysis was conducted to screen independent risk factors associated with the occurrence of PHLF,and a visual nomogram prediction model was established.Receiver operating characteristic curve(ROC)was plotted to evaluate the predictive performance of the model for PHLF.Results The Logistic regression analysis of the model revealed that decreased FLIS score(OR=0.456,P<0.001),major resection(OR=1.702,P=0.023),prolonged prothrombin time(OR=1.229,P=0.009),and low platelet count(OR=0.996,P=0.005)were closely related to the occurrence of PHLF and were independent predictors of PHLF.The predictive model constructed based on these four independent factors achieved an AUC value of 0.791 in the training set and 0.772 in the validation set.Conclusion The PHLF prediction model based on FLIS score,major resection,prothrombin time,and platelet count demonstrates high diagnostic performance,and can effectively guide clinical preoperative evaluation and pre-operative decision-making.

Magnetic resonance imagingHepatocellular carcinomaPost hepatectomy liver failurePredictive model

王梓羽、唐云静、苏丹柯、罗宁斌

展开 >

530021 南宁,广西医科大学附属肿瘤医院影像科

磁共振成像 肝细胞癌 肝切除术后肝衰竭 预测模型

广西科技基地和人才专项项目

桂科AD20238096

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(7)