首页|人工智能辅助下PCAT定量参数联合CCTA斑块特征对非阻塞性冠状动脉缺血疾病的的诊断价值

人工智能辅助下PCAT定量参数联合CCTA斑块特征对非阻塞性冠状动脉缺血疾病的的诊断价值

The Diagnostic Value of AI-assisted PCAT Quantitative Parameter Combined with CCTA Plaque Features for Ischemic with non-Obstructive Coronary Arteries

扫码查看
目的 探讨人工智能辅助下冠状动脉周围脂肪组织(PCAT)定量参数联合冠状动脉CT血管成像(CCTA)斑块特征对非阻塞性冠状动脉缺血疾病(INOCA)的诊断价值.方法 回顾性搜集本院CCTA检查并诊断为非阻塞性冠状动脉狭窄(狭窄程度<50%)的患者176例,以临床出现心肌缺血症状分为缺血组和非缺血组.对比两组CCTA斑块特征及人工智能辅助下PCAT定量参数[冠状动脉周围脂肪衰减指数(FAI)、体积],并应用Logistic回归分析心肌缺血的危险因素,并绘制受试者工作特征(ROC)曲线得出最佳诊断模型.结果 缺血组(93例)与非缺血组(83例)的临床基线参数无统计学差异.缺血组斑块总体积、钙化斑块体积、非钙化斑块体积、脂质斑块体积、脂质-纤维斑块体积、斑块长度、重塑指数、斑块负荷、非钙化斑块体积百分比、FAI均较非缺血组高(P均<0.05),其中斑块长度(OR=1.070,P=0.001)、斑块负荷(OR=1.144,P<0.001)、斑块近端 FAI(OR=1.111,P=0.002)为心肌缺血的独立预测因子.斑块特征预测心肌缺血的敏感度48.18%、特异度83.14%,受试者工作特征曲线曲线下面积(AUC)=0.696,P<0.001,FAI预测心肌缺血的敏感度83.2%、特异度32.6%,AUC=0.586,P=0.003,二者联合预测心肌缺血的敏感度62.3%、特异度75.6%,AUC=0.753,P<0.001.ROC曲线显示,联合模型的预测效能较好(AUC=0.753),高于斑块特征模型(AUC=0.696)及FAI模型(AUC=0.586),差异均具有统计学意义(P<0.05).结论 斑块长度、斑块负荷、斑块近端FAI是INOCA人群心肌缺血的独立预测因子,FAI和斑块特征的联合模型对INOCA人群心肌缺血的预测效能较高.
Objective To investigate the diagnostic value of artificial intelligence-assisted quantitative parameters of pericoronary adipose tissue(PCAT)combined with coronary CT angiography(CCTA)plaque characteristics in non-ob-structive coronary artery ischemic disease(INOCA).Methods A total of 176 patients diagnosed with non-obstructive coronary artery stenosis(stenosis degree<50%)by CCTA in our hospital were retrospectively collected.They were divid-ed into an ischemia group and a non-ischemia group based on clinical symptoms of myocardial ischemia.The plaque charac-teristics of CCTA and quantitative parameters of PCAT(FAI,volume)assisted by artificial intelligence were compared be-tween the two groups.Logistic regression was used to analyze the risk factors for myocardial ischemia,and a receiver operat-ing characteristic(ROC)curve was drawn to obtain the best diagnostic model.Results There were no statistically signif-icant differences in clinical baseline parameters between the ischemia group(93 cases)and the non-ischemia group(83 cases).The ischemia group had higher values than the non-ischemia group for total plaque volume,calcified plaque volume,non-calcified plaque volume,lipid plaque volume,lipid-fibrous plaque volume,plaque length,remodeling index,plaque bur-den,percentage of non-calcified plaque volume,and FAI(all P<0.05).Among these variables,independent predictors of myocardial ischemia included plaque length(OR=1.070;P=0.001),plaque burden(OR=1.144;P<0.001),and proximal FAI(OR=1.111;P=0.002).The sensitivity and specificity for predicting myocardial ischemia using only plaque characteristics were 48.18%and 83.14%,respectively;AUC=0.696;P<0.001.The sensitivity and specificity for predic-ting myocardial ischemiawith only FAIwere 83.2%and32.6%,respectively;AUC=0.586;P=0.003.The combinationof bothvariables yieldeda sensitivityof62.3%and aspecificityof75.6%;AUC=0753;P<0001.The ROCcurve showed that the prediction efficiency of the combination model was better(AUC=0.753),higher than that of the plaque characteristics model(AUC=0.696)and FAI model(AUC=0.586),and the differences were statistically significant(P<0.05).Conclusion Plaque length,plaque burden,and proximal FAI are independent predictors of myocardial ischemia in the IN-OCA population,and the combination model of FAI and plaque characteristics has a higher predictive efficiency for myocar-dial ischemia in the INOCA population.

Ischemic with non-obstructive coronary arteriesPlaquesPericoronary fatMyocardial ischemiaCom-puterized Tomography

邹佳妮、廖熙妍、潘晶晶、吴倩、付婷婷、黄文才

展开 >

中国人民解放军中部战区总医院放射诊断科

武汉科技大学

南方医科大学

非阻塞性冠状动脉缺血 斑块 冠状动脉周围脂肪 心肌缺血 计算机体层摄影

中部战区总医院育英计划项目

ZZYFH202101

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(8)
  • 2