首页|影像组学结合机器学习预测自发性脑出血的短期预后

影像组学结合机器学习预测自发性脑出血的短期预后

Radiomics Nomogram Model Combined with Machine Learning to Predict Short-Term Outcomes in Spontaneous Intracerebral Hemorrhage

扫码查看
目的 基于影像组学结合机器学习建立模型预测自发性脑出血(sICH)患者短期预后并对模型进行验证.方法 回顾性获取本院289例sICH患者的影像学和临床资料,并以7∶3将患者随机地分为训练集与验证集.基于LASSO算法降维处理,采用5倍交叉验证方法调试出最优参数并结合5种机器算法建立预测模型,比较所有模型的准确性.通过训练集的多变量Logistic回归分析构建影像+临床的综合预测模型并绘制受试者工作特征曲线下面积(AUC)及列线图.获取外院同时期163例sICH患者的数据作为独立的外部验证集.结果 通过比较五种机器学习算法的性能,随机森林(RF)模型表现出最好的性能(AUC=0.83);临床影像组学列线图在训练集、内部验证集、外部验证集的AUC分别为0.88、0.86、0.86.校准曲线在训练集和外部验证集中均显示满意的效果(P<0.05),而在内部验证中一致性较差(P<0.05).结论 基于影像组学结合机器学习的临床影像组学列线图是为sICH患者短期预后提供个性化风险评估的有效工具,其中RF算法模型表现最好.
Objective To develop and validate a radiomics nomogram model combined with Machine Learning to pre-dict short-term outcomes in spontaneous intracerebral hemorrhage.Methods We retrospectively included 289 patients with acute ICH in our hospital between October 2019 and October 2021,and divided them into a training cohort and an in-ternal validation cohort at a ratio of 7∶3.Based on the Least Absolute Shrinkage and Selection Operator(LASSO)algo-rithm,the optimal parameters were debutted by 5x cross-validation method,and the prediction models were built by combi-ning 5 machine algorithms.The area under curve(AUC)of the receiver operating characteristic(ROC)curve were used to evaluate these models.Multivariate Logistic regression analysis of the training set was used to construct a comprehensive prediction model of imaging and clinic,and the nomogram were drawn.we used data from an external hospital of 163 pa-tients served as an independent external test cohort to validate the model.Results By comparing the performance of five machine learning algorithms,the random forest(RF)model showed the best performance(AUC=0.83).The AUC of ra-diomics nomogram model combined with Machine Learning in training cohort,internal validation cohort,external validation cohort were 0.88,0.86,0.86,respectively.Calibration curves showed satisfactory effect in both training and external co-horts(both P<0.05),whereas in internal cohort there were less consistency(P<0.05).Conclusion Radiomics nomo-gram model combined with Machine Learning is an effective tool to provide personalized risk assessment of short-term out-comes for ICH patients,in which the RF algorithm model performs best.

Spontaneous intracerebral hemorrhageRadiomicsPrognosisNomogram

郭影、陈鹏宇、赵俊果、沈桂权、李邦国、高波

展开 >

550004 贵阳,贵州医科大学附属医院影像科

黔西南州人民医院影像科

遵义医科大学附属医院影像科

自发性脑出血 影像组学 预后 列线图

国家自然科学基金面上项目贵州省科技支撑计划

81871333黔科[2020]4Y159

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(9)