首页|基于多序列瘤周瘤内影像组学预测胶质瘤病理分级

基于多序列瘤周瘤内影像组学预测胶质瘤病理分级

Prediction of Glioma Pathologic Grading Based on Multisequence Peritumor Intratumor Radiomics

扫码查看
目的 探讨多序列瘤周瘤内影像组学模型预测胶质瘤病理分级的价值.方法 回顾性分析153例病理结果为胶质瘤患者的MRI影像资料,其中低级别胶质瘤50例,高级别胶质瘤103例.将预处理后的T1WI、T2WI、T2 FLAIR、T1增强影像资料导入3D Slicer中进行瘤内感兴趣区域勾画,并将其自动外扩至肿瘤周围2 mm、3 mm、4 mm、5 mm、6 mm,应用Python中的pyradiomics进行影像组学特征提取,使用t检验、Pearson相关分析以及最小绝对收缩与选择算法模型进一步筛选特征,使用6种分类器分别构建瘤周、瘤内影像组学模型,筛选出最佳瘤周模型后,将每个序列的最佳瘤周(均为瘤周3 mm)与瘤内影像特征组合构建瘤内+瘤周模型,采用受试者工作特征曲线(ROC)及其曲线下面积(AUC)评估不同预测模型的效能,采用DeLong检验比较不同模型之间AUC的差异.结果 患者的性别、年龄与胶质瘤病理分级无关(P>0.05).在构建的预测模型中,4种序列的瘤周与瘤内影像特征联合构建的预测模型预测性能最佳,在测试组AUC达到了为0.987、准确度为0.935、特异度为0.929、敏感度为0.906.结论 瘤周影像组学模型同样具有良好的预测效能,与瘤内影像组学模型效能相当,并能够提升瘤内影像组学模型的预测性能.瘤周瘤内影像组为术前确定患者胶质瘤病理分级提供一种准确率更高的无创预测方法,为临床个体化、精确化治疗方案的制定及预后评估提供重要信息.
Objective Exploring the value of a multisequence peritumor intratumor radiomics model for predicting path-ological grading of gliomas.Methods A retrospective analysis was conducted on MRI data from 153 patients with patho-logically confirmed gliomas,including 50 cases of low-grade gliomas and 103 cases of high-grade gliomas.Preprocessed T1WI,T2WI,T2FL AIR,and T1C imaging data were imported into 3D Slicer for region of interest delineation.The regions were automatically expanded to 2mm,3mm,4mm,5mm,and 6mm around the tumor.Radiomic features were extracted using pyradiomics in Python.Feature selection was performed using t-tests,Pearson correlation analysis,and the Least Absolute Shrinkage and Selection Operator(LASSO)model.Six classifiers were employed to build peritumoral and intratumoral ra-diomic models separately.After selecting the optimal peritumoral model,the best peritumoral features(all with a peritumoral margin of 3 mm)for each sequence were combined with intratumoral features to construct an intratumoral+peritumoral model.The performance of different prediction models was evaluated using the receiver operating characteristic(ROC)curve and the area under the curve(AUC).The DeLong test was used to compare the differences in AUC between different models.Results The patients gender and age were not significantly associated with the pathological grading of gliomas(P>0.05).Among the constructed predictive models,the model using both peritumoral and intratumoral imaging features across four sequences combined with the MLP classifier demonstrated the best predictive performance,achieving an AUC of 0.987 in the test set,with an accuracy of 0.935,specificity of 0.929,and sensitivity of 0.906.Conclusion The peritu-moral radiomics model also exhibited excellent predictive performance,comparable to that of the intratumoral radiomics model,and was able to enhance the predictive performance of the intratumoral radiomics model.The combined peritumoral and intratumoral radiomics provides a more accurate non-invasive method for preoperatively determining the pathological grade of gliomas,offering critical information for the development of individualized and precise treatment plans,as well as for prognosis evaluation in clinical practice.

GliomaPathological gradeRadiomicsPeritumoral brain spaceCombinatorial model

刘深圳、王在斌、娄金峰、姜帆、夏熙双

展开 >

471000 洛阳,河南科技大学第一附属医院神经外科

450014 郑州,郑州大学第二附属医院神经外科

胶质瘤 病理分级 影像组学 瘤周脑区 联合模型

河南省医学科技攻关计划联合共建项目基金资助项目

LHGJ20220467

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(9)