首页|基于影像组学及CT征象列线图预测浸润性肺腺癌脏层胸膜侵犯的研究

基于影像组学及CT征象列线图预测浸润性肺腺癌脏层胸膜侵犯的研究

Nomogram Based on CT Radiomics Features and CT Features for Predicting Visceral Pleural Invasion of Invasive Lung Adenocarcinoma

扫码查看
目的 探讨瘤内和瘤周影像组学联合CT征象建立联合模型列线图术前预测肺腺癌(IAC)脏层胸膜侵犯(VPI)的价值.方法 回顾性分析234例病理确诊的浸润性IAC病例,以7∶3比例将其随机分为训练组(n=164例)及验证组(n=70例).依次应用单因素、多因素Logistic回归分析筛选出VPI独立预测因子,构建CT模型.基于CT图像进行瘤内(GTV)、瘤周(PTV)、瘤内+瘤周(GPTV)影像组学特征提取,筛选出各组最优特征子集及其评分系数(Radscore),构建并选出最优影像组学模型;结合CT特征构建联合模型并用列线图将其可视化.以受试者工作特征(ROC)曲线、DeLong检验评估、比较各模型的效能;采用决策曲线(DCA)评估模型预测效能的准确性、临床实用价值.结果 胸膜增厚(P<0.001)及肿瘤直径(P=0.01)是VPI独立预测因子.CT模型AUC=0.74,0.81;GPTV 模型(AUC=0.83,0.78)预测效能高于 GTV 模型(AUC=0.78,0.70)及 PTV 模型(AUC=0.81,0.74).列线图的预测效能(AUC=0.85,0.85)较CT模型及影像组学模型高.结论 联合CT征象及影像组学特征建立的联合模型列线图在预测VPI诊断中具有更高的价值.
Objective To explore the value of nomogram based on CT radiomics features and CT features for predicting Visceral Pleural Invasion(VPI)of invasive lung adenocarcinoma before operation.Methods Retrospective analysis of 234 patients with pathologically confirmed invasive lung adenocarcinoma.The patients were randomly divided into training group(n=164)and validation group(n=70)at 7∶3.The risk factors of VPI were screened by univariate and multivariate Logistic regression analysis in turn,and the CT model was constructed.The radiomics features of intratumoral(GTV),peri-tumor(PTV)and gross peritumoral tumor volume(GPTV)were extracted based on CT images,and the optimal feature subset and radiomics score were selected,and the optimal radiomics model was constructed and selected.The radiomics score of the best radiomics model combined with the CT features,the combined model was constructed and visualized by no-mogram.The effectiveness of each model was evaluated and compared with the receiver operating characteristic(ROC)curve and DeLong test.Decision curve(DCA)was used to evaluate the accuracy and clinical value of the model.Results Pleural thickening(P<0.001)and tumor diameter(P<0.01)were all CT risk factors for VPI.The AUC of the CT model is 0.74,0.81.The areas under the curve(AUC)of GPTV model for predicting VPI of IAC was 0.83,0.78,all higher than those of GTV model(AUC=0.78,0.70)and PTV model(AUC=0.81,0.74).AUC of combined model no-mogram(0.85,0.85)was higher than those of the CT model and GPTV model.Conclusion Nomogram based on CT fea-tures and GPTV radiomics features could effectively predict VPI.

Invasive lung adenocarcinomaVisceral pleural invasionRadiomicsNomogramTomography

黄日坤、杨锦汉、曾令华、李凯

展开 >

537200 桂平市人民医院

530000 南宁,广西农投大数据科技有限公司

530000 南宁,广西医科大学第一附属医院放射科

浸润性腺癌 脏层胸膜侵犯 影像组学 列线图 计算机断层扫描(CT)

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(9)