首页|基于平扫及增强CT预测肺实性结节良恶性的两种模型的建立和比较

基于平扫及增强CT预测肺实性结节良恶性的两种模型的建立和比较

Establishment and Comparison of Two Models Based on Plain CT and Contrast-Enhanced CT for Predicting Malignancy of Solitary Solid Pulmonary Nodules

扫码查看
目的 基于单平扫CT影像特征和平扫联合增强CT影像特征分别建立模型预测肺实性结节的良恶性,并比较两种模型的诊断效能.方法 搜集2013年3月至2017年8月天津医科大学肿瘤医院854例肺实性结节患者,以7∶3的比例随机分配为试验组(598例)及内部验证组(256例),搜集2018年12月至2019年10月山西医科大学第二医院158例肺实性结节患者作为外部验证组.采用单因素及多因素Logistic回归分析临床及影像特征,筛选模型预测因素,建立单平扫模型及平扫联合增强模型并绘制列线图.绘制模型的受试者工作特性(ROC)曲线及校准曲线,计算模型的曲线下面积(AUC),评估模型预测效能.结果 在试验组中平扫模型及平扫联合增强模型的 AUC 分别为 0.873(95%CI:0.843~0.898)、0.912(95%CI:0.886~0.933),内部验证组中分别为 0.875(95%CI:0.828~0.913)、0.907(95%CI:0.864~0.940),外部验证组中分别为 0.905(95%CI:0.849~0.946)、0.926(95%CI:0.873~0.961).研究结果表明两种模型均表现了良好的肺实性结节良恶性预测性能,其中平扫联合增强模型的预测效能更高.结论 基于临床和CT影像学特征建立的平扫联合增强模型可有效预测肺实性结节良恶性,为临床术前肺实性结节良恶性诊断提供依据.
Objective To establish models for predicting the benign and malignant pulmonary solid nodules based on plain CT imaging and plain & contrast-enhanced CT imaging,and to compare their efficacy.Methods A total of 854 pa-tients with pulmonary solid nodules in Tianjin Medical University Cancer Institute & Hospital from March 2013 to August 2017 were randomly divided into experimental group(n=598)and internal validation group(n=256)at a ratio of 7∶3.A total of 158 patients with pulmonary solid nodules in the Second Hospital of Shanxi Medical University from December 2018 to October 2019 were collected as an external validation group.Univariate and multivariate logistic regression were used to analyze the clinical and imaging characteristics,screen the predictive factors of the model,establish the plain CT based model and the plain & contrast-enhanced CT based model,and draw the nomograms.The receiver operating character-istic(ROC)curve and calibration curve of the model were drawn,and the area under ROC curve(AUC)of the models were calculated to evaluate the prediction efficiency of the models.Results The AUC of the plain CT based model and the plain & contrast-enhanced CT based model were 0.873(95%CI,0.843-0.898)and 0.912(95%CI,0.886-0.933)in the experimental group;and 0.875(95%CI,0.828-0.913)and 0.907(95%CI,0.864-0.940)in the internal valida-tion group;and 0.905(95%CI,0.849-0.946),0.926(95%CI,0.873-0.961)in the external validation group,re-spectively.Two models showed good prediction performance,and the plain & contrast-enhanced CT based model performed better.Conclusion The models based on clinical and CT imaging features have a high predictive performance,which can effectively predict the benign and malignant of pulmonary solid nodules before surgery.

Pulmonary nodulesPulmonary cancerLogistic regression analysisPrediction modelContrast-en-hanced CT

朱伟杰、张文佳、崔效楠、刘佳鑫、李鑫蕊、陈嫣然、叶兆祥

展开 >

300060 天津医科大学肿瘤医院放射科,国家恶性肿瘤临床医学研究中心,天津市恶性肿瘤临床医学研究中心,天津市肿瘤防治重点实验室

030001 太原,山西医科大学医学影像学院

300070 天津医科大学医学影像学院

肺结节 肺癌 Logistic回归分析 预测模型 增强CT

国家自然科学基金项目天津市医学重点学科(专科)建设项目

82302180TJYXZDXK-010A

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(10)