首页|基于临床及MRI影像组学模型预测肝细胞癌Ki67表达

基于临床及MRI影像组学模型预测肝细胞癌Ki67表达

Predicting Ki67 Expression in Hepatocellular Carcinoma Based on Clinical and MRI Radiomics Models

扫码查看
目的 基于临床和影像组学建立列线图模型预测肝细胞癌(HCC)Ki67表达水平并进行验证.方法 回顾性分析经手术切除的183例HCC患者的临床、影像及病理资料.根据免疫组织化学结果分为阳性及阴性表达组.对于连续性变量,采用独立样本t检验和非参数检验进行组间比较.对于分类资料,采用卡方或者Fisher精确检验进行组间比较.使用LASSO回归进行影像组学特征筛选并计算Radscore.Logistic单因素和多因素回归分析被用于筛选Ki67高表达的独立预测因子并构建列线图.ROC曲线分析和Bootstrap自助法进行模型的区分度和校准度检验.决策曲线用于模型的临床获益分析.结果 相对于Ki67低表达组,Ki67高表达组患者平均年龄更低,血清AFP水平及肿瘤脂肪分数更低,Ⅱ型和Ⅲ型形状的比例更高,肿瘤的Edmondson-Steiner分级及微血管侵犯概率更高(P<0.05).单因素和多因素Logistic回归分析显示,血清AFP水平、肿瘤的形状、脂肪分数及Radscore是Ki67表达的独立预测因子.基于上述参数建立列线图临床影像联合预测模型.ROC曲线分析显示模型曲线下面积为0.856(95%CI:0.802~0.911),敏感度和特异度分别为75%及87%.平均绝对误差为0.016.决策曲线分析显示风险阈值在0.05~1.0之间,模型具有临床净获益.结论 基于临床及MRI特征建立的列线图模型可以在术前有效预测HCC组织Ki67的表达,有利于肿瘤的个体化治疗.
Objective To develop a nomogram including clinical and MRI-based radiomics characteristics to predict the expression of Ki67 in hepatocellular carcinoma(HCC)and validate its efficacy.Methods The clinical,imaging,and pathological data of 183 patients with HCC who underwent surgical resection in Nanjing Drum Tower Hospital from 2016 to 2020 were retrospectively analyzed.According to the results of immunohistochemistry,they were divided into positive and negative expression groups.For continuous variables,the student t-test and Mann-Whitney U test were used for comparison between the two groups.For categorical data,Chi-square or Fisher's exact tests were used for comparison between the two groups.LASSO regression were used to extract and screen radiomics features and calculate Radscore.Univariate and multi-variate logistic regression analyses were used to screen independent predictors of Ki67 expression and construct nomogram.ROC analysis and bootstrapping were used to verify the discrimination and calibration of the model.Decision curve was used for the clinical benefit analysis of the model.Results Compared with the Ki67-negative group,the Ki67-positive group was confirmed by lower average age,lower serum AFP level,lower tumor proton density fat fraction(PDFF),higher propor-tion of type Ⅱ and type Ⅲ shapes,higher Edmondson-Steiner grades and microvascular invasion probability(all P<0.05).Univariate and multivariate Logistic regression analysis showed that serum AFP level,tumor shape,PDFF,and Rad-score were independent predictors of Ki67 expression.Based on the above parameters,a nomogram prediction model was es-tablished.With ROC analysis and internal validation,the model confirmed good discrimination(area under the curve=0.856,sensitivity 75%,specificity 87%)and calibration(mean absolute error 0.016).Net benefits were obtained as the threshold probabilities ranging from 0.05 to 1.0.Conclusion The nomogram model incorporating clinical and MRI-based radiomics features could effectively predict the Ki67 level in HCC tissues before surgery,which is conducive to individual-ized treatment.

Hepatocellular carcinomaKi67 expressionMagnetic resonance imagingRadiomicsNomogram

张来柱、李欢、连兆武、周县伟、黎兵华、麦筱莉、余德才

展开 >

210008 南京大学医学院附属鼓楼医院普通外科肝胆与肝移植外科

210008 南京大学医学院附属鼓楼医院影像科

肝细胞癌 Ki67表达 磁共振成像 影像组学 列线图

2024

临床放射学杂志
黄石市医学科技情报所

临床放射学杂志

CSTPCD北大核心
影响因子:0.872
ISSN:1001-9324
年,卷(期):2024.43(12)