首页|基于可解释性机器学习探究尿路上皮癌脱落细胞学检出率影响因素的研究

基于可解释性机器学习探究尿路上皮癌脱落细胞学检出率影响因素的研究

扫码查看
目的:基于可解释性机器学习算法,分析影响尿脱落细胞吖啶橙荧光染色用于膀胱癌诊断阳性率的关键临床与病理因素,为优化其在膀胱癌诊断中的诊断效能提供理论依据.方法:选择2019年8月—2022年8月在天津医科大学第二医院就诊并确诊为尿路上皮癌的737例患者,收集患者尿脱落细胞学结果、同期尿常规及尿沉渣镜检结果、同次术后病理资料,包括肿瘤位置、数量、级别和Ki-67等资料,随后利用6种机器学习模型验证上述变量与尿脱落细胞学阳性结果的相关性,最后,利用Shapley加性解释法对最优模型进行模型的可解释性和重要性分析,从上述临床病理因素中筛选出与尿脱落细胞学阳性检出率相关的变量.结果:在6种机器学习算法中,随机森林模型表现最优.可解释性分析提示,在尿常规和沉渣镜检各项目中,与阳性检出率相关的因素按照重要性从高到低依次是白细胞镜检个数、非鳞状细胞镜检个数和红细胞计数.最后,患者年龄、性别因素的重要性较低,但与尿脱落细胞阳性检出率存在相关性,肿瘤数量和位置与尿脱落细胞阳性检出率无明显相关性.结论:本研究探索了影响尿脱落细胞吖啶橙荧光染色阳性率的相关临床和病理因素,加深了对尿脱落细胞学检查敏感因素的认识,为尿脱落细胞吖啶橙染色技术的应用场景提供了指导.
Exploring the influencing factors in urine cytology detection rates in urothelial carcinoma:an interpretable machine learning approach
Objective:Based on interpretable machine learning algorithms,this study analyzes the key clinical and pathological factors affecting the positive rate of acridine orange fluorescence staining of exfoliated urinary cells in the diagnosis of bladder cancer,aiming to optimize its diagnostic efficacy in bladder cancer detection.Methods:We selected 737 patients diagnosed with urothelial carcinoma who visited the Second Hospital of Tianjin Medical University from August 2019 to August 2022.We collected data on urine cytology results,concurrent urinalysis,urine sediment microscopy results,and postoperative pathology findings from the same period,including tumor location,number,grade,and Ki-67.We then used six machine learning models to verify the correlation between these variables and positive urine cytology results.Finally,we employed the Shapley Additive Explanation(SHAP)method to analyze the interpretability and importance of the optimal model,aiming to identify variables related to the positive detection rate of urine cytology among the clinical and pathological factors mentioned above.Results:Among the six machine learning algorithms,the random forest model performed the best.Interpretability analysis indicated that,in the urinalysis and sediment microscopy categories,the factors related to the positive de-tection rate,ranked by importance from highest to lowest,were the number of leukocytes observed under micros-copy,the number of non-squamous cells observed under microscopy,and the red blood cell count.Finally,while the importance of patients'age and gender was relatively low,they were still correlated with the positive detection rate of urine cytology.Tumor number and location showed no significant correlation with the positive detection rate of urine cy-tology.Conclusion:This study explored the clinical and pathological factors influencing the positive rate of acridine orange fluorescence staining in urine cytology.It enhanced the understanding of sensitive factors affecting urine cytology testing and provided guidance for the application scenarios of acridine orange fluorescence staining technology in urine cytology.

urine cytologymachine learningurothelial carcinomabladder cancerroutine urine test

张哲、吴周亮、沈冲、郄云凯、黄世旺、胡海龙

展开 >

天津医科大学第二医院泌尿外科(天津,300211)

尿脱落细胞学 机器学习 尿路上皮癌 膀胱癌 尿常规

2024

临床泌尿外科杂志
华中科技大学同济医学院附属协和医院 同济医院

临床泌尿外科杂志

CSTPCD
影响因子:0.734
ISSN:1001-1420
年,卷(期):2024.39(12)