首页|颅脑创伤患者临床输血影响因素分析及预测模型构建

颅脑创伤患者临床输血影响因素分析及预测模型构建

Influencing factors of clinical blood transfusion in patients with traumatic brain injury and construction of prediction model

扫码查看
目的 通过分析创伤性颅脑损伤(TBI)患者临床输血影响因素,建立TBI患者临床输血预测模型,以指导临床输血决策.方法 回顾性分析南昌大学第一附属医院2015 年1 月1 日—2021 年6 月30 日收治的3 579 例TBI患者病例资料,根据患者院内是否输注红细胞将患者分为输血组和未输血组,将患者按7∶3比例随机分为训练集和测试集,分析比较训练集和测试集中两组患者间临床资料,通过逻辑回归筛选患者院内输血相关危险因素,采用列线图建立预测模型,并评价模型的预测性能.结果 训练集和测试集中两组患者基本资料、临床指征和实验室检测指标间均存在差异(P<0.05).输血组患者院内死亡率、并发症发生率、机械通气、重症监护室入住率、住院时间均明显高于未输血组(P<0.05).多因素逻辑回归显示年龄≥60 岁、心率、格拉斯哥昏迷评分、颅骨骨折、其他骨折、失血性休克、Hct、INR和Ca2+浓度是TBI患者输血的危险因素.根据危险因素构建的列线图模型在训练集和测试集的曲线下面积为 0.931(95%CI:0.921~0.941)和0.920(95%CI:0.902~0.938),其灵敏度和特异度分别为 80.0%、88.8%和 78.0%、87.0%.结论 以TBI患者输血的危险因素构建的预测模型具有较好预测效果,可用于预测TBI患者输血需求,指导临床医师输血决策,提高患者救治成功率.
Objective To create a prediction model for clinical blood transfusion decision-making by analyzing the factors that affect blood transfusion in patients with traumatic brain injury(TBI).Methods The clinical data of 3 579 patients with TBI admitted to the First Affiliated Hospital of Nanchang University from January 1,2015 to June 30,2021 were analyzed retrospectively.The patients were divided into transfusion group and non-transfusion group based on in-hospital red blood cell transfusion.The patients were randomly divided into training set and test set according to the ratio of 7∶3.The clinical information of two groups as well as clinical prognostic outcomes were examined.The risk factors associated with in-hospital blood transfusion were screened using logistic regression to create a nomogram predictive model,and the model's predictive capability was assessed.Results There were differences in basic data,clinical indications and laboratory test indexes between TBI patients with blood transfusion and those without blood transfusion(P<0.05).The in-hospital mortality,complication rate,mechanical ventilation,intensive care unit admission and hospitalization time in the blood transfusion group were significantly higher than those in the non-blood transfusion group(P<0.05).Age≥60 years,heart rate,Glasgow coma score,skull fracture,other fractures,hemorrhagic shock,Hct,INR and Ca were included in the nomogram model.The area under the ROC curve of the nomogram model in the training set and the test set was 0.931(95%CI:0.921-0.941)and 0.920(95%CI:0.902-0.938),and the sensitivity and specificity were 80.0%,88.8%and 78.0%,87.0%,respectively.Conclusions Nomogram prediction model has good performance,which can be used to predict the blood transfusion demand of TBI patients,assist clinicians in blood transfusion decision-making,and improve the success rate of treatment.

traumatic brain injuryblood transfusionlogistic regressionnomogrampredictive model

刘威、吴承高、刘强、熊伟、乐爱平

展开 >

330006 南昌,南昌大学第一附属医院输血医学科

江西省输血医学重点实验室

创伤性颅脑损伤 临床输血 逻辑回归 列线图 预测模型

江西省重点研发计划项目

20192ACB50014

2024

临床神经外科杂志
南京医科大学附属脑科医院

临床神经外科杂志

CSTPCD
影响因子:1.019
ISSN:1672-7770
年,卷(期):2024.21(4)
  • 3