首页|大语言模型为药品不良反应报告者生成反馈信息的探究

大语言模型为药品不良反应报告者生成反馈信息的探究

扫码查看
目的 应用大语言模型(LLM)为药品不良反应(ADR)自发报告者提供信息反馈,促进安全用药并提升报告者的参与度,进一步完善ADR自发报告平台。方法 结合提示语策略和药品说明书信息,使用3种不同的LLM(通义千问2。5、Kimi、智谱清言)针对10例自发的ADR报告生成反馈信息(包括关联性评价、需补充信息及安全用药建议)。将LLM生成的关联性评价结果与3位临床药师的评价结果进行比较,并使用DISCERN、C-PMART-P评价LLM反馈信息的整体质量及可理解性。结果 9例不良反应的人机评价结果一致,只有1例人机评价结果不一致。DISCERN评分显示,通义千问2。5、Kimi、智谱清言生成的反馈信息质量评分中位数均为5分;C-PMART-P评分显示,通义千问2。5、Kimi、智谱清言生成的反馈信息平均可理解性评分分别为74。9%、71。5%、72。6%,表明生成材料的整体质量和可理解性良好。结论 LLM在ADR关联性评价中表现出较高的准确性,同时能生成质量良好且易于理解的反馈信息,为指导安全用药、提升报告者体验及完善ADR自发报告系统提供了新方法。
Applying large language models to generate feedback for reporters of spontaneous adverse drug reactions
Objective To apply large language models(LLMs)to provide feedback for spontaneous ADR reporters,thereby promoting safe medication use,enhancing reporter engagement,and improving the spontaneous ADR reporting platform.Methods Using prompt strategies and information from drug package inserts,three different LLMs(Qwen-2.5,Kimi,and Zhipuqingyan)were employed to generate feedback for 10 spontaneous ADR reports,including causality assessment,information to be supplemented,and safe medication use suggestions.The causality assessment results generated by the LLMs were compared with the judgments made by three clinical pharmacists.The overall quality and comprehensibility of LLM-generated feedback were evaluated using DISCERN and C-PMART-P.Results The human-machine determination results were consistent in 9 out of 10 adverse reactions,with only 1 case showing inconsistent results.The DISCERN scores indicated that the feedback information generated by Qwen-2.5,Kimi,and Zhipuqingyan all had a median quality score of 5.The C-PMART-P scores showed that the average comprehensibility scores for the feedback information generated by Qwen-2.5,Kimi,and Zhipuqingyan were 74.9%,71.5%,and 72.6%,respectively,suggesting good overall quality and comprehensibility.Conclusion LLMs demonstrated high accuracy in ADR causality assessment and were able to generate feedback information that is of good quality and easy to understand,providing a new approach for guiding safe medication use,enhancing reporter experience,and improving the spontaneous ADR reporting system.

large language modelsadverse drug reactionsspontaneous reportingcausality assessmentsafe medication use

张志玲、李强、闫盈盈、何娜、吴紫阳、林阳、张晓乐、翟所迪

展开 >

首都医科大学附属北京安贞医院 药事部,北京 100029

北京大学第三医院 药学部,北京 100191

北京药盾公益基金会,北京 100062

苏州大学附属第一医院 药剂科,江苏 苏州 215004

北京大学医学部 药物评价中心,北京 100191

展开 >

大语言模型 药品不良反应 自发报告 关联性评价 安全用药

2024

临床药物治疗杂志
北京药学会

临床药物治疗杂志

CSTPCD
影响因子:1.07
ISSN:1672-3384
年,卷(期):2024.22(10)