首页|SAR图像飞机目标智能检测识别技术研究进展与展望

SAR图像飞机目标智能检测识别技术研究进展与展望

扫码查看
合成孔径雷达(SAR)采用相干成像机制,具有全天时、全天候成像的独特优势.飞机目标作为一种典型高价值目标,其检测与识别已成为SAR图像解译领域的研究热点.近年来,深度学习技术的引入,极大提升了SAR图像飞机目标检测与识别的性能.该文结合团队在SAR图像目标特别是飞机目标的检测与识别理论、算法及应用等方面的长期研究积累,对基于深度学习的SAR图像飞机目标检测与识别进行了全面回顾和综述,深入分析了SAR图像飞机目标特性及检测识别难点,总结了最新的研究进展以及不同方法的特点和应用场景,汇总整理了公开数据集及常用性能评估指标,最后,探讨了该领域研究面临的挑战和发展趋势.
Intelligent Technology for Aircraft Detection and Recognition through SAR Imagery:Advancements and Prospects
Synthetic Aperture Radar(SAR),with its coherent imaging mechanism,has the unique advantage of all-day and all-weather imaging.As a typical and important topic,aircraft detection and recognition have been widely studied in the field of SAR image interpretation.With the introduction of deep learning,the performance of aircraft detection and recognition,which is based on SAR imagery,has considerably improved.This paper combines the expertise gathered by our research team on the theory,algorithms,and applications of SAR image-based target detection and recognition,particularly aircraft.Additionally,this paper presents a comprehensive review of deep learning-powered aircraft detection and recognition based on SAR imagery.This review includes a detailed analysis of the aircraft target characteristics and current challenges associated with SAR image-based detection and recognition.Furthermore,the review summarizes the latest research advancements,characteristics,and application scenarios of various technologies and collates public datasets and performance evaluation metrics.Finally,several challenges and potential research prospects are discussed.

Synthetic Aperture Radar(SAR)Detection and recognitionAircraft targetsDeep learningeXplainable Artificial Intelligence(XAI)

罗汝、赵凌君、何奇山、计科峰、匡纲要

展开 >

国防科技大学电子科学学院电子信息系统复杂电磁环境效应国家重点实验室 长沙 410073

合成孔径雷达 目标检测与识别 飞机目标 深度学习 可解释人工智能

国家自然科学基金湖南省自然科学基金卫星信息智能处理与应用技术重点实验室自主研究基金

620014802021JJ406842022-ZZKY-JJ-10-02

2024

雷达学报
中国科学院电子学研究所 中国雷达行业协会

雷达学报

CSTPCD北大核心EI
影响因子:0.667
ISSN:2095-283X
年,卷(期):2024.13(2)
  • 124