首页|面向SAR目标识别深度网络可理解的类激活映射方法

面向SAR目标识别深度网络可理解的类激活映射方法

扫码查看
随着深度学习方法在合成孔径雷达(SAR)图像解译领域的广泛应用,SAR目标识别深度网络可理解性问题逐渐受到学者的关注.类激活映射(CAM)作为常用的可理解性算法,能够通过热力图的方式,直观展示对识别任务起作用的显著性区域.然而作为一种事后解释的方法,其只能静态展示当次识别过程中的显著性区域,无法动态展示当输入发生变化时显著性区域的变化规律.该文将扰动的思想引入类激活映射,提出了一种基于SAR背景杂波特性类激活映射方法(SCC-CAM),通过对输入图像引入同分布的全局扰动,逐步向SAR识别深度网络施加干扰,使得网络判决发生翻转,并在此刻计算网络神经元输出激活值的变化程度.该方法既能解决添加扰动可能带来的扰动传染问题,又能够动态观察和度量目标识别网络在识别过程中显著性区域的变化规律,从而增强深度网络的可理解性.在MSTAR数据集和OpenSARShip-1.0数据集上的试验表明,该文提出的算法具有更加精确的定位显著性区域的能力,相比于传统方法,在平均置信度下降率、置信度上升比例、信息量等评估指标上,所提算法具有更强的可理解性,能够作为通用的增强网络可理解性的方法.
Explainability of Deep Networks for SAR Target Recognition via Class Activation Mapping
With the widespread application of deep learning methods in Synthetic Aperture Radar(SAR)image interpretation,the explainability of SAR target recognition deep networks has gradually attracted the attention of scholars.Class Activation Mapping(CAM),a commonly used explainability algorithm,can visually display the salient regions influencing the recognition task through heatmaps.However,as a post hoc explanation method,CAM can only statically display the salient regions during the current recognition process and cannot dynamically show the variation patterns of the salient regions upon changing the input.This study introduces the concept of perturbation into CAM,proposing an algorithm called SAR Clutter Characteristics CAM(SCC-CAM).By introducing globally distributed perturbations to the input image,interference is gradually applied to deep SAR recognition networks,causing decision flips.The degree of change in the activation values of network neurons is also calculated.This method addresses the issue of perturbation propagation and allows for dynamic observation and measurement of variation patterns of salient regions during the recognition process.Thus,SCC-CAM enhances the explainability of deep networks.Experiments on the MSTAR and OpenSARShip-1.0 datasets demonstrate that the proposed algorithm can more accurately locate salient regions.Compared with traditional methods,the algorithm in this study shows stronger explainability in terms of average confidence degradation rates,confidence ascent ratios,information content,and other evaluation metrics.This algorithm can serve as a universal method for enhancing the explainability of networks.

SAR target recognitionNetwork explainabilitySAR clutter characteristicsClass Activation Mapping(CAM)Area constrained confidence decline rate

崔宗勇、杨致远、蒋阳、曹宗杰、杨建宇

展开 >

电子科技大学信息与通信工程学院 成都 611731

SAR目标识别 网络可理解性 SAR杂波特性 类激活映射 面积约束置信度下降率

国家自然科学基金国家自然科学基金

6227111661971101

2024

雷达学报
中国科学院电子学研究所 中国雷达行业协会

雷达学报

CSTPCD北大核心EI
影响因子:0.667
ISSN:2095-283X
年,卷(期):2024.13(2)
  • 45