首页|融合可微分渲染的SAR多视角样本增广

融合可微分渲染的SAR多视角样本增广

扫码查看
合成孔径雷达(SAR)因其全天候、全天时的监测能力在民用和军事领域得到广泛应用.近年来,深度学习已被广泛应用于SAR图像自动解译.然而,由于卫星轨道和观测角度的限制,SAR目标样本面临视角覆盖率不全的问题,这为学习型SAR目标检测识别算法带来了挑战.该文提出一种融合可微分渲染的SAR多视角样本生成方法,结合逆向三维重建和正向渲染技术,通过卷积神经网络(CNN)从少量SAR视角图像中反演目标三维表征,然后利用可微分SAR渲染器(DSR)渲染出更多视角样本,实现样本在角度维的插值.另外,方法的训练过程使用DSR构建目标函数,无需三维真值监督.根据仿真数据的实验结果,该方法能够有效地增加多视角SAR目标图像,并提高小样本条件下典型SAR目标识别率.
Multi-view Sample Augumentation for SAR Based on Differentiable SAR Renderer
Synthetic Aperture Radar(SAR)is extensively utilized in civilian and military domains due to its all-weather,all-time monitoring capabilities.In recent years,deep learning has been widely employed to automatically interpret SAR images.However,due to the constraints of satellite orbit and incident angle,SAR target samples face the issue of incomplete view coverage,which poses challenges for learning-based SAR target detection and recognition algorithms.This paper proposes a method for generating multi-view samples of SAR targets by integrating differentiable rendering,combining inverse Three-Dimensional(3D)reconstruction,and forward rendering techniques.By designing a Convolutional Neural Network(CNN),the proposed method inversely infers the 3D representation of targets from limited views of SAR target images and then utilizes a Differentiable SAR Renderer(DSR)to render new samples from more views,achieving sample interpolation in the view dimension.Moreover,the training process of the proposed method constructs the objective function using DSR,eliminating the need for 3D ground-truth supervision.According to experimental results on simulated data,this method can effectively increase the number of multi-view SAR target images and improve the recognition rate of typical SAR targets under few-shot conditions.

Synthetic Aperture Radar(SAR)Differentiable SAR Renderer(DSR)Convolutional Neural Network(CNN)3D reconstructionMulti-view sample generation

贾赫成、蒲欣洋、王燕妮、符士磊、徐丰

展开 >

电磁波信息科学教育部重点实验室 复旦大学 上海 200433

合成孔径雷达(SAR) 可微分SAR渲染器(DSR) 卷积神经网络(CNN) 三维重建 多视角样本生成

国家自然科学基金

61991422

2024

雷达学报
中国科学院电子学研究所 中国雷达行业协会

雷达学报

CSTPCD北大核心EI
影响因子:0.667
ISSN:2095-283X
年,卷(期):2024.13(2)
  • 26