首页|基于深度学习的多特征融合海面目标检测方法

基于深度学习的多特征融合海面目标检测方法

扫码查看
该文考虑了海杂波环境下的雷达目标检测问题,提出了一种基于深度学习的海面目标检测器.该检测器通过融合从不同数据源中提取的多种互补性特征以增加目标和杂波的差异性,从而提升对海面目标的检测性能.具体来说,该检测器首先利用两个特征提取分支分别从距离像和距离多普勒谱图中提取多层次快时间特征和距离特征;然后,设计局部-全局特征提取结构从特征的慢时间维度或多普勒维度提取序列关联性;接着,提出基于自适应卷积权重学习的特征融合模块,实现快慢时间特征和距离多普勒特征的高效融合;最后,对多层次特征进行融合、上采样和非线性映射获得检测结果.基于两个公开雷达数据集上的实验验证了所提检测器的检测性能.
Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion
Considering the problem of radar target detection in the sea clutter environment,this paper proposes a deep learning-based marine target detector.The proposed detector increases the differences between the target and clutter by fusing multiple complementary features extracted from different data sources,thereby improving the detection performance for marine targets.Specifically,the detector uses two feature extraction branches to extract multiple levels of fast-time and range features from the range profiles and the range-Doppler(RD)spectrum,respectively.Subsequently,the local-global feature extraction structure is developed to extract the sequence relations from the slow time or Doppler dimension of the features.Furthermore,the feature fusion block is proposed based on adaptive convolution weight learning to efficiently fuse slow-fast time and RD features.Finally,the detection results are obtained through upsampling and nonlinear mapping to the fused multiple levels of features.Experiments on two public radar databases validated the detection performance of the proposed detector.

Radar target detectionSea clutterDeep learningConvolutional Neural Network(CNN)Feature fusion

汪翔、汪育苗、陈星宇、臧传飞、崔国龙

展开 >

电子科技大学信息与通信工程学院 成都 611731

电子科技大学长三角研究院 衢州 324000

雷达目标检测 海杂波 深度学习 卷积神经网络 特征融合

国家自然科学基金衢州市财政资助科研项目衢州市财政资助科研项目广东省重点领域研发计划高等学校学科创新引智计划

622711262022D0082022D0052020B090905002B17008

2024

雷达学报
中国科学院电子学研究所 中国雷达行业协会

雷达学报

CSTPCD北大核心EI
影响因子:0.667
ISSN:2095-283X
年,卷(期):2024.13(3)
  • 12