首页|基于动量迭代快速梯度符号的SAR-ATR深度神经网络黑盒攻击算法

基于动量迭代快速梯度符号的SAR-ATR深度神经网络黑盒攻击算法

扫码查看
合成孔径雷达自动目标识别(SAR-ATR)领域缺乏有效的黑盒攻击算法,为此,该文结合动量迭代快速梯度符号(MI-FGSM)思想提出了一种基于迁移的黑盒攻击算法.首先结合SAR图像特性进行随机斑点噪声变换,缓解模型对斑点噪声的过拟合,提高算法的泛化性能;然后设计了能够快速寻找最优梯度下降方向的ABN寻优器,通过模型梯度快速收敛提升算法攻击有效性;最后引入拟双曲动量算子获得稳定的模型梯度下降方向,使梯度在快速收敛过程中避免陷入局部最优,进一步增强对抗样本的黑盒攻击成功率.通过仿真实验表明,与现有的对抗攻击算法相比,该文算法在MSTAR和FUSAR-Ship数据集上对主流的SAR-ATR深度神经网络的集成模型黑盒攻击成功率分别提高了3%~55%和6.0%~57.5%,而且生成的对抗样本具有高度的隐蔽性.
Black-box Attack Algorithm for SAR-ATR Deep Neural Networks Based on MI-FGSM
The field of Synthetic Aperture Radar Automatic Target Recognition(SAR-ATR)lacks effective black-box attack algorithms.Therefore,this research proposes a migration-based black-box attack algorithm by combining the idea of the Momentum Iterative Fast Gradient Sign Method(MI-FGSM).First,random speckle noise transformation is performed according to the characteristics of SAR images to alleviate model overfitting to the speckle noise and improve the generalization performance of the algorithm.Second,an AdaBelief-Nesterov optimizer is designed to rapidly find the optimal gradient descent direction,and the attack effectiveness of the algorithm is improved through a rapid convergence of the model gradient.Finally,a quasihyperbolic momentum operator is introduced to obtain a stable model gradient descent direction so that the gradient can avoid falling into a local optimum during the rapid convergence and to further enhance the success rate of black-box attacks on adversarial examples.Simulation experiments show that compared with existing adversarial attack algorithms,the proposed algorithm improves the ensemble model black-box attack success rate of mainstream SAR-ATR deep neural networks by 3%~55%and 6.0%~57.5%on the MSTAR and FUSAR-Ship datasets,respectively;the generated adversarial examples are highly concealable.

Synthetic Aperture Radar(SAR)Target recognitionBlack-box attackQuasi-Hyperbolic Momentum(QHM)operatorSpeckle noise transformation

万烜申、刘伟、牛朝阳、卢万杰

展开 >

中国人民解放军战略支援部队信息工程大学数据与目标工程学院 郑州 450000

合成孔径雷达 目标识别 黑盒攻击 拟双曲动量算子 斑点噪声变换

国家自然科学基金

42201472

2024

雷达学报
中国科学院电子学研究所 中国雷达行业协会

雷达学报

CSTPCD北大核心EI
影响因子:0.667
ISSN:2095-283X
年,卷(期):2024.13(3)
  • 5