首页|基于数据融合和LSTM的冷链运输环境预测

基于数据融合和LSTM的冷链运输环境预测

Cold Chain Transportation Environment Prediction Based on Data Fusion and LSTM

扫码查看
为了保证农副产品的质量和安全,基于多传感器的远程监控技术已经广泛应用于农产品冷链运输行业.传统的冷链运输环境监测与预测技术主要结合各环境指标的分析,并没有对异构和非均衡数据进行有效融合和拟合预测.基于预训练卷积自编码器、注意力机制与长短记忆网络(LSTM)提出了K-LSTM融合与预测算法模型,实验结果表明K-LSTM算法模型融合精度达到了 96%,相较于文献研究算法指标结果提高了 20%~70%,因此提出的K-LSTM能够对冷藏车厢内部温度和湿度提供准确预测,为冷链的智能管理提供了有效支持.
In order to ensure the quality and safety of agricultural and sideline products,remote monitoring technol-ogy based on multi-sensor has been widely used in agricultural cold chain transportation industry.The traditional cold chain transportation environmental monitoring and prediction technology mainly combines the analysis of vari-ous environmental indicators,and does not effectively integrate and fit the heterogeneous and unbalanced data.In this paper,a K-LSTM fusion and prediction algorithm model is proposed based on the pre-trained convolution en-coder,attention mechanism and long and short memory network(LSTM).The experimental results show that the fusion accuracy of the K-LSTM algorithm reaches 96%,which is 20%~70%higher than the index results of the literatures.Therefore,the K-LSTM proposed in this paper can accurately predict the temperature and humidity in-side the refrigerated carriage,which provides effective support for the intelligent management of the cold chain.

cold chain transportationdata fusionLSTMforecast

陈林、丁士杰

展开 >

安徽财贸职业学院,安徽 合肥 230601

宿州学院,安徽 宿州 234000

冷链运输 数据融合 LSTM 预测

安徽省高校自然科学重点项目

KJ2018A0908

2024

陇东学院学报
陇东学院

陇东学院学报

影响因子:0.204
ISSN:1674-1730
年,卷(期):2024.35(2)
  • 10