首页|基于深度学习算法的萤石氟化钙含量预测研究

基于深度学习算法的萤石氟化钙含量预测研究

扫码查看
萤石作为一种重要的工业矿物,其品质主要由其中氟化钙的含量决定.为了有效评估和预测萤石中的氟化钙含量,提出一种基于自适应噪声完全集合经验模态分解(CEEMDAN)和卷积神经网络(CNN)以及双向长短期记忆神经网络(BiLSTM)相结合的深度学习算法用于萤石中氟化钙含量的预测.实验结果表明,所提方法具有较高的预测精度和稳定性,为萤石的质量评估和工业应用提供重要参考.
Research on predicting the calcium fluoride content in fluorite based on deep learning algorithm
Fluorite is an important industrial mineral,its quality is primarily determined by the content of calcium fluoride within it.To effectively assess and predict the calcium fluoride content in fluorite,a deep learning algorithm that combines CEEMDAN,CNN and BiLSTM networks is proposed.Experimental results indicate that the proposed method achieves high prediction accuracy and stability,providing significant references for the quality assessment and industrial application of fluorite.

fluoritecalcium fluorideconvolutional neural network(CNN)complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)bidirectional long and short term memory neural network(BiLSTM)

李凌云、刘海庆、郝彬、任建吉

展开 >

多氟多新材料股份有限公司,河南 焦作 454000

河南理工大学 软件学院,河南 焦作 454000

萤石 氟化钙 卷积神经网络 自适应噪声完全集合经验模态分解 双向长短期记忆神经网络

2024

磷肥与复肥
郑州大学 中国磷肥工业协会

磷肥与复肥

CSTPCD
影响因子:0.291
ISSN:1007-6220
年,卷(期):2024.39(9)
  • 3