In order to solve the problem of increasing the proportion of longitudinal cracks in the corner of the slab during the high-speed production of small chamfered mold in a steel plant,based on the existing chamfer furcal cooling structure water slot,a one-hole one-slot scheme with different round hole diameters and round hole positions was proposed.A three-dimensional heat transfer coupling model of the narrow side copper plate and cooling water was established.Industrial measured thermocouple temperatures and cooling water inlet/outlet temperature difference were used for validation.The temperature and velocity fields of the narrow side copper plate and cooling water were calculated for different one-hole-one-slot cooling structure schemes with different circular hole diameters and positions.The results show that the proposed one-hole-one-slot cooling structure with a circular hole diameter of 8 mm and a circular hole position of 26 mm results in a maximum temperature reduction of 14.4-17.6 K on the chamfered hot surface of bent copper plate and a maximum temperature reduction of 10.9-12.3 K on the chamfered hot surface of bolt cross-sectional copper plate,compared to the furcal water slots cooling structure.The cooling water flow in the circular hole reaches 8.4 m/s,effectively cooling the chamfered surface and vertex of the copper plate.Additionally,the cooling water flow rates on both sides of the bolt's water tank reach 10.0 m/s,enhancing the cooling uniformity of the plate around the bolt.
small chamfered moldnarrow platechamfer copper plate coolingstructural optimization