首页|傅里叶变换红外光谱指纹图谱鉴别艾绒等级

傅里叶变换红外光谱指纹图谱鉴别艾绒等级

扫码查看
提出了傅里叶变换红外光谱指纹图谱鉴别艾绒等级的方法,通过8种光谱预处理方法(去噪处理、高斯滤波、多元散射校正、标准正态变换、一阶导数+Savitzky-Golay(SG)平滑、二阶导数+SG平滑、一阶导数+Norris Gap、二阶导数+Norris Gap)和5种模式识别方法[反向传播神经网络(BP-NN)算法、遗传优化支持向量机(SVM-ga)、粒子群优化支持向量机(SVM-pso)、随机森林(RF)算法、K-最近邻(KNN)算法]的结合对比,得到鉴别艾绒等级的最佳模型.结果表明,艾绒的指纹图谱中有11个共有峰,对其进行主成分分析,得到9个主成分,累计方差贡献率达到99.67%.标准正态变换结合SVM-pso算法的鉴别效果最好,其训练集的鉴别正确率为100%,测试集的鉴别正确率为93.3%.
Identification of Moxa Grade by Fourier Transform Infrared Spectroscopy Fingerprint
A method for identification of moxa grade by Fourier transform infrared spectroscopy fingerprint was proposed,and the optimal model for identifying moxa grade was obtained by comparison of combination of 8 spectral preprocessing methods[denoising,Gaussian filtering,multivariate scattering correction,standard normal transformation,first derivative+Savitzky-Golay(SG)smoothing,second derivative+SG smoothing,first derivative+Norris Gap,and second derivative+Norris Gap]and 5 pattern recognition methods[back propagation neural network(BP-NN)algorithm,genetic optimization support vector machine(SVM-ga),particle swarm optimization support vector machine(SVM-pso),random forest(RF)algorithm,and K-nearest neighbor(KNN)algorithm].As shown by the results,there were 11 common peaks in maxo fingerprint.Nine principal components were obtained by principal component analysis,and the cumulative variance contribution rate reached 99.67%.The combination of standard normal transformation and SVM-pso algorithm had the best discrimination effect,with the discrimination accuracy of 100%in the training set and 93.3%in the test set.

Fourier transform infrared spectroscopyfingerprintmoxa grade identificationpattern recognition method

朱丽芳、章恺、李超、李入林

展开 >

南阳职业学院,南阳 473000

南阳市杜仲胶提取工程技术研究中心,南阳 473000

南阳理工学院,南阳 473000

傅里叶变换红外光谱法 指纹图谱 艾绒等级鉴别 模式识别方法

2024

理化检验-化学分册
上海材料研究所

理化检验-化学分册

CSTPCD北大核心
影响因子:0.647
ISSN:1001-4020
年,卷(期):2024.60(9)
  • 11