理论物理通讯(英文版)2024,Vol.76Issue(3) :51-61.DOI:10.1088/1572-9494/ad244f

The quasi-Gramian solution of a non-commutative extension of the higher-order nonlinear Schr?dinger equation

H W A Riaz J Lin
理论物理通讯(英文版)2024,Vol.76Issue(3) :51-61.DOI:10.1088/1572-9494/ad244f

The quasi-Gramian solution of a non-commutative extension of the higher-order nonlinear Schr?dinger equation

H W A Riaz 1J Lin1
扫码查看

作者信息

  • 1. Department of Physics,Zhejiang Normal University,Jinhua 321004,China
  • 折叠

Abstract

The nonlinear Schrödinger(NLS)equation,which incorporates higher-order dispersive terms,is widely employed in the theoretical analysis of various physical phenomena.In this study,we explore the non-commutative extension of the higher-order NLS equation.We treat real or complex-valued functions,such as g1=g1(x,t)and g2=g2(x,t)as non-commutative,and employ the Lax pair associated with the evolution equation,as in the commutation case.We derive the quasi-Gramian solution of the system by employing a binary Darboux transformation.The soliton solutions are presented explicitly within the framework of quasideterminants.To visually understand the dynamics and solutions in the given example,we also provide simulations illustrating the associated profiles.Moreover,the solution can be used to study the stability of plane waves and to understand the generation of periodic patterns within the context of modulational instability.

Key words

integrable systems/Darboux transformation/solitons

引用本文复制引用

基金项目

国家自然科学基金(11835 011)

国家自然科学基金(12 375 006)

出版年

2024
理论物理通讯(英文版)
中国科学院理论物理研究所 中国物理学会

理论物理通讯(英文版)

CSTPCD
影响因子:0.333
ISSN:0253-6102
参考文献量33
段落导航相关论文