理论物理通讯(英文版)2024,Vol.76Issue(3) :70-83.DOI:10.1088/1572-9494/ad2364

Q-homotopy analysis method for time-fractional Newell-Whitehead equation and time-fractional generalized Hirota-Satsuma coupled KdV system

Di Liu Qiongya Gu Lizhen Wang
理论物理通讯(英文版)2024,Vol.76Issue(3) :70-83.DOI:10.1088/1572-9494/ad2364

Q-homotopy analysis method for time-fractional Newell-Whitehead equation and time-fractional generalized Hirota-Satsuma coupled KdV system

Di Liu 1Qiongya Gu 1Lizhen Wang1
扫码查看

作者信息

  • 1. Center for Nonlinear Studies,School of Mathematics,Northwest University,Xi'an,710127,China
  • 折叠

Abstract

In this paper,two types of fractional nonlinear equations in Caputo sense,time-fractional Newell-Whitehead equation(FNWE)and time-fractional generalized Hirota-Satsuma coupled KdV system(HS-cKdVS),are investigated by means of the q-homotopy analysis method(q-HAM).The approximate solutions of the proposed equations are constructed in the form of a convergent series and are compared with the corresponding exact solutions.Due to the presence of the auxiliary parameter h in this method,just a few terms of the series solution are required in order to obtain better approximation.For the sake of visualization,the numerical results obtained in this paper are graphically displayed with the help of Maple.

Key words

fractional Newell-Whitehead equation/fractional generalized Hirota-Satsuma coupled KdV system/approximate solution/q-homotopy analysis method

引用本文复制引用

基金项目

国家自然科学基金(12271433)

出版年

2024
理论物理通讯(英文版)
中国科学院理论物理研究所 中国物理学会

理论物理通讯(英文版)

CSTPCD
影响因子:0.333
ISSN:0253-6102
参考文献量42
段落导航相关论文