首页|Cauchy matrix approach to three non-isospectral nonlinear Schr?dinger equations

Cauchy matrix approach to three non-isospectral nonlinear Schr?dinger equations

扫码查看
This paper aims to develop a direct approach,namely,the Cauchy matrix approach,to non-isospectral integrable systems.In the Cauchy matrix approach,the Sylvester equation plays a central role,which defines a dressed Cauchy matrix to provide τ functions for the investigated equations.In this paper,using the Cauchy matrix approach,we derive three non-isospectral nonlinear Schrödinger equations and their explicit solutions.These equations are generically related to the time-dependent spectral parameter in the Zakharov-Shabat-Ablowitz-Kaup-Newell-Segur spectral problem.Their solutions are obtained from the solutions of unreduced non-isospectral nonlinear Schrödinger equations through complex reduction.These solutions are analyzed and illustrated to show the non-isospectral effects in dynamics of solitons.

Cauchy matrix approachSylvester equationnonlinear Schrödinger equationnon-isospectral integrable systemexplicit solution

Alemu Yilma Tefera、Shangshuai Li、Da-jun Zhang

展开 >

Department of Mathematics,Shanghai University,Shanghai 200444,China

Newtouch Center for Mathematics of Shanghai University,Shanghai 200444,China

Department of Applied Mathematics,Faculty of Science and Engineering,Waseda University,Tokyo 169-8555,Japan

国家自然科学基金

12271334

2024

理论物理通讯(英文版)
中国科学院理论物理研究所 中国物理学会

理论物理通讯(英文版)

CSTPCD
影响因子:0.333
ISSN:0253-6102
年,卷(期):2024.76(5)
  • 30