首页|Learning topological defects formation with neural networks in a quantum phase transition
Learning topological defects formation with neural networks in a quantum phase transition
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
万方数据
Neural networks possess formidable representational power,rendering them invaluable in solving complex quantum many-body systems.While they excel at analyzing static solutions,nonequilibrium processes,including critical dynamics during a quantum phase transition,pose a greater challenge for neural networks.To address this,we utilize neural networks and machine learning algorithms to investigate time evolutions,universal statistics,and correlations of topological defects in a one-dimensional transverse-field quantum Ising model.Specifically,our analysis involves computing the energy of the system during a quantum phase transition following a linear quench of the transverse magnetic field strength.The excitation energies satisfy a power-law relation to the quench rate,indicating a proportional relationship between the excitation energy and the kink numbers.Moreover,we establish a universal power-law relationship between the first three cumulants of the kink numbers and the quench rate,indicating a binomial distribution of the kinks.Finally,the normalized kink-kink correlations are also investigated and it is found that the numerical values are consistent with the analytic formula.