理论物理通讯(英文版)2024,Vol.76Issue(7) :52-56.DOI:10.1088/1572-9494/ad4090

Quantifying quantum entanglement via machine learning models

Changchun Feng Lin Chen
理论物理通讯(英文版)2024,Vol.76Issue(7) :52-56.DOI:10.1088/1572-9494/ad4090

Quantifying quantum entanglement via machine learning models

Changchun Feng 1Lin Chen2
扫码查看

作者信息

  • 1. LMIB(Beihang University),Ministry of Education,Beijing 100191,China;School of Mathematical Sciences,Beihang University,Beijing 100191,China
  • 2. LMIB(Beihang University),Ministry of Education,Beijing 100191,China;School of Mathematical Sciences,Beihang University,Beijing 100191,China;International Research Institute for Multidisciplinary Science,Beihang University,Beijing 100191,China
  • 折叠

Abstract

Quantifying entanglement measures for quantum states with unknown density matrices is a challenging task.Machine learning offers a new perspective to address this problem.By training machine learning models using experimentally measurable data,we can predict the target entanglement measures.In this study,we compare various machine learning models and find that the linear regression and stack models perform better than others.We investigate the model's impact on quantum states across different dimensions and find that higher-dimensional quantum states yield better results.Additionally,we investigate which measurable data has better predictive power for target entanglement measures.Using correlation analysis and principal component analysis,we demonstrate that quantum moments exhibit a stronger correlation with coherent information among these data features.

Key words

quantum information/entanglement/predict/machine learning/coherence

引用本文复制引用

基金项目

NNSF of China(11871089)

出版年

2024
理论物理通讯(英文版)
中国科学院理论物理研究所 中国物理学会

理论物理通讯(英文版)

CSTPCD
影响因子:0.333
ISSN:0253-6102
段落导航相关论文