首页|New patterns of localized excitations in(2+1)-dimensions:The fifth-order asymmetric Nizhnik-Novikov-Veselov equation

New patterns of localized excitations in(2+1)-dimensions:The fifth-order asymmetric Nizhnik-Novikov-Veselov equation

扫码查看
By applying the mastersymmetry of degree one to the time-independent symmetry K1,the fifth-order asymmetric Nizhnik-Novikov-Veselov system is derived.The variable separation solution is obtained by using the truncated Painlevé expansion with a special seed solution.New patterns of localized excitations,such as dromioff,instanton moving on a curved line,and tempo-spatial breather,are constructed.Additionally,fission or fusion solitary wave solutions are presented,graphically illustrated by several interesting examples.

asymmetric Nizhnik-Novikov-Veselov systemlocalized excitationstruncated Painlevé expansion

Jianyong Wang、Yuanhua Chai

展开 >

Department of Mathematics and Physics,Quzhou University,Quzhou 324000,China

Physics Group,Jiangshan Middle School of Zhejiang Province,Quzhou 324000,China

2024

理论物理通讯(英文版)
中国科学院理论物理研究所 中国物理学会

理论物理通讯(英文版)

CSTPCD
影响因子:0.333
ISSN:0253-6102
年,卷(期):2024.76(8)