首页|Efficient fidelity estimation:alternative derivation and related applications

Efficient fidelity estimation:alternative derivation and related applications

扫码查看
In[Phys.Rev.A 107 012427(2023)],Baldwin and Jones prove that Uhlmann-Jozsa's fidelity between two quantum states ρ and σ,i.e.,F(ρ,σ):=(Tr√ √ρσ√ρ)2,can be written in a simplified form as F(ρ,σ)=(Tr√ρσ)2.In this article,we give an alternative proof of this result,using a function power series expansion and the properties of the trace function.Our approach not only reinforces the validity of the simplified expression but also facilitates the exploration of novel dissimilarity functions for quantum states and more complex trace functions of density operators.

Ulhmann-Jozsa fidelityRényi entropyefficient fidelity estimationChebyshev polynomials

Diego S Starke、Marcos L W Basso、Jonas Maziero

展开 >

Physics Department,Center for Natural and Exact Sciences,Federal University of Santa Maria,Roraima Avenue 1000,Santa Maria,RS,97105-900,Brazil

Center for Natural and Human Sciences,Federal University of ABC,Avenue of the States,Santo André,São Paulo,09210-580,Brazil

2024

理论物理通讯(英文版)
中国科学院理论物理研究所 中国物理学会

理论物理通讯(英文版)

CSTPCD
影响因子:0.333
ISSN:0253-6102
年,卷(期):2024.76(9)